visibility algorithm
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
pp. 2150316
Author(s):  
Qingxiang Feng ◽  
Haipeng Wei ◽  
Jun Hu ◽  
Wenzhe Xu ◽  
Fan Li ◽  
...  

Most of the existing researches on public health events focus on the number and duration of events in a year or month, which are carried out by regression equation. COVID-19 epidemic, which was discovered in Wuhan, Hubei Province, quickly spread to the whole country, and then appeared as a global public health event. During the epidemic period, Chinese netizens inquired about the dynamics of COVID-19 epidemic through Baidu search platform, and learned about relevant epidemic prevention information. These groups’ search behavior data not only reflect people’s attention to COVID-19 epidemic, but also contain the stage characteristics and evolution trend of COVID-19 epidemic. Therefore, the time, space and attribute laws of propagation of COVID-19 epidemic can be discovered by deeply mining more information in the time series data of search behavior. In this study, it is found that transforming time series data into visibility network through the principle of visibility algorithm can dig more hidden information in time series data, which may help us fully understand the attention to COVID-19 epidemic in Chinese provinces and cities, and evaluate the deficiencies of early warning and prevention of major epidemics. What’s more, it will improve the ability to cope with public health crisis and social decision-making level.


Author(s):  
Davide Provenzano ◽  
Rodolfo Baggio

AbstractIn this study, we characterized the dynamics and analyzed the degree of synchronization of the time series of daily closing prices and volumes in US$ of three cryptocurrencies, Bitcoin, Ethereum, and Litecoin, over the period September 1,2015–March 31, 2020. Time series were first mapped into a complex network by the horizontal visibility algorithm in order to revel the structure of their temporal characters and dynamics. Then, the synchrony of the time series was investigated to determine the possibility that the cryptocurrencies under study co-bubble simultaneously. Findings reveal similar complex structures for the three virtual currencies in terms of number and internal composition of communities. To the aim of our analysis, such result proves that price and volume dynamics of the cryptocurrencies were characterized by cyclical patterns of similar wavelength and amplitude over the time period considered. Yet, the value of the slope parameter associated with the exponential distributions fitted to the data suggests a higher stability and predictability for Bitcoin and Litecoin than for Ethereum. The study of synchrony between the time series investigated displayed a different degree of synchronization between the three cryptocurrencies before and after a collapse event. These results could be of interest for investors who might prefer to switch from one cryptocurrency to another to exploit the potential opportunities of profit generated by the dynamics of price and volumes in the market of virtual currencies.


2020 ◽  
Vol 12 (20) ◽  
pp. 3465
Author(s):  
Yahya Alshawabkeh

Heritage recording has received much attention and benefits from recent developments in the field of range and imaging sensors. While these methods have often been viewed as two different methodologies, data integration can achieve different products, which are not always found in a single technique. Data integration in this paper can be divided into two levels: laser scanner data aided by photogrammetry and photogrammetry aided by scanner data. At the first level, superior radiometric information, mobility and accessibility of imagery can be actively used to add texture information and allow for new possibilities in terms of data interpretation and completeness of complex site documentation. In the second level, true orthophoto is generated based on laser data, the results are rectified images with a uniform scale representing all objects at their planimetric position. The proposed approaches enable flexible data fusion and allow images to be taken at an optimum time and position for radiometric information. Data fusion usually involves serious distortions in the form of a double mapping of occluded objects that affect the product quality. In order to enhance the efficiency of visibility analysis in complex structures, a proposed visibility algorithm is implemented into the developed methods of texture mapping and true orthophoto generation. The algorithm filters occluded areas based on a patch processing using a grid square unit set around the projected vertices. The depth of the mapped triangular vertices within the patch neighborhood is calculated to assign the visible one. In this contribution, experimental results from different historical sites in Jordan are presented as a validation of the proposed algorithms. Algorithms show satisfactory performance in terms of completeness and correctness of occlusion detection and spectral information mapping. The results indicate that hybrid methods could be used efficiently in the representation of heritage structures.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2344
Author(s):  
Congju Du ◽  
Bin Tang

Radar unconventional active jamming, including unconventional deceptive jamming and barrage jamming, poses a serious threat to wideband radars. This paper proposes an unconventional-active-jamming recognition method for wideband radar. In this method, the visibility algorithm of converting the radar time series into graphs, called visibility graphs, is first given. Then, the visibility graph of the linear-frequency-modulation (LFM) signal is proved to be a regular graph, and the rationality of extracting features on visibility graphs is theoretically explained. Therefore, four features on visibility graphs, average degree, average clustering coefficient, Newman assortativity coefficient, and normalized network-structure entropy, are extracted from visibility graphs. Finally, a random-forests (RF) classifier is chosen for unconventional-active-jamming recognition. Experiment results show that recognition probability was over 90% when the jamming-to-noise ratio (JNR) was above 0 dB.


Author(s):  
Nafiseh Masoudi ◽  
Georges Fadel

The problem of finding a collision free path in an environment occupied by obstacles, known as path planning, has many applications in design of complex systems such as wire routing in automobile assemblies or motion planning for robots. Developing the visibility graph of the workspace is among the first techniques to address the path-planning problem. The visibility algorithm is efficient in finding the global optimal path. However, it is computationally expensive as it explores the entire workspace of the problem to create all non-intersecting segments of the graph. In this paper, we propose an algorithm based on the notion of convex hulls to generate the partial visibility graph from a given start point to a goal point in a 2D workspace cluttered with a number of disjoint polygonal convex or concave obstacles. The algorithm facilitates the attainment of the shortest path in a planar workspace while reducing the size of the visibility graph to explore.


2015 ◽  
Vol 772 ◽  
pp. 225-245 ◽  
Author(s):  
Meenatchidevi Murugesan ◽  
R. I. Sujith

We investigate the scale invariance of combustion noise generated from turbulent reacting flows in a confined environment using complex networks. The time series data of unsteady pressure, which is the indicative of spatiotemporal changes happening in the combustor, is converted into complex networks using the visibility algorithm. We show that the complex networks obtained from the low-amplitude, aperiodic pressure fluctuations during combustion noise have scale-free structure. The power-law distributions of connections in the scale-free network are related to the scale invariance of combustion noise. We also show that the scale-free feature of combustion noise disappears and order emerges in the complex network topology during the transition from combustion noise to combustion instability. The use of complex networks enables us to formalize the identification of the pattern (i.e. scale-free to order) during the transition from combustion noise to thermoacoustic instability as a structural change in topology of the network.


Sign in / Sign up

Export Citation Format

Share Document