A Linear High Frequency gm Boosting Wideband LNA in 130 nm SiGe HBT with Minimum NF of 4.3 dB for WiGig Application

Author(s):  
Pournamy Sukumaran ◽  
Navin Kumar ◽  
Maran Ponnambalam

This paper presents an inductor less wideband low noise amplifier (LNA) with an area of 0.3[Formula: see text]mm2, using 130[Formula: see text]nm SiGe BiCMOS technology targeted for 5G WiGig wireless application. A [Formula: see text] boosting amplifier used at the intermediate node of the cascode topology to reduce the noise contribution of the common base (CB) transistor for the first time in SiGe HBT technology. Mathematical analysis shows that the proposed high frequency [Formula: see text] boosting technique on the CB transistor can be optimally tuned for either low NF or high linearity. Furthermore, the circuit incorporates variable capacitors for multimode capability, ensuring optimal performance in all four WiGig channels. Post layout EM simulation of the circuit shows that the resultant LNA has a maximum gain of 21.08[Formula: see text]dB with the [Formula: see text]3 dB frequency over 56[Formula: see text]GHz to 67.3[Formula: see text]GHz. The proposed LNA exhibits a minimum noise figure of 4.3[Formula: see text]dB and shows high linearity with an input referred [Formula: see text] of [Formula: see text]2.7[Formula: see text]dB. The designed when operated using supply voltage of 1.2[Formula: see text]V consumes a total dc power of 8.9[Formula: see text]mW.

2015 ◽  
Vol 7 (3-4) ◽  
pp. 339-347 ◽  
Author(s):  
Stefan Malz ◽  
Bernd Heinemann ◽  
Rudolf Lachner ◽  
Ullrich R. Pfeiffer

This paper presents two J-band amplifiers in different 0.13 μm SiGe technologies: a small signal amplifier (SSA) in a technology in which never before gain has been shown over 200 GHz; and a low noise amplifier (LNA) design for 230 GHz applications in an advanced SiGe HBT technology with higher fT/fmax, demonstrating the combination of high gain, low noise, and low power in a single amplifier. Both circuits consist of a four-stage pseudo-differential cascode topology. By employing series–series feedback at the single-stage level the small-signal gain is increased, enabling circuit operation at high-frequencies and with improved efficiency, while maintaining unconditional stability. The SSA was fabricated in a SiGe BiCMOS technology by Infineon with fT/fmax values of 250/360 GHz. It has measured 19.5 dB gain at 212 GHz with a 3 dB bandwidth of 21 GHz. It draws 65 mA from a 3.3 V supply. On the other hand, a LNA was designed in a SiGe BiCMOS technology by IHP with fT/fmaxof 300/450 GHz. The LNA has measured 22.5 dB gain at 233 GHz with a 3 dB bandwidth of 10 GHz and a simulated noise figure of 12.5 dB. The LNA draws only 17 mA from a 4 V supply. The design methodology, which led to these record results, is described in detail with the LNA as an example.


Frequenz ◽  
2012 ◽  
Vol 66 (7-8) ◽  
Author(s):  
Stefan Gerlich ◽  
Peter Weger

AbstractThis paper presents a low noise amplifier (LNA) with differential output using a passive frequency selective feedback. The introduced feedback stabilizes the amplifier at lower frequencies and improves the gain in the desired frequency band. The LNA consists of two stages. Additionally, a buffer at the output is added for measurements. The amplifier was implemented in a 0.35 μm SiGe technology. For measurements the LNA was bonded to a substrate. A peak gain of 28.1 dB and a minimum noise figure of 2.2 dB at a supply voltage of 3 V were achieved.


2013 ◽  
Vol 479-480 ◽  
pp. 1014-1017
Author(s):  
Yi Cheng Chang ◽  
Meng Ting Hsu ◽  
Yu Chang Hsieh

In this study, three stage ultra-wide-band CMOS low-noise amplifier (LNA) is presented. The UWB LNA is design in 0.18μm TSMC CMOS technique. The LNA input and output return loss are both less than-10dB, and achieved 10dB of average power gain, the minimum noise figure is 6.55dB, IIP3 is about-9.5dBm. It consumes 11mW from a 1.0-V supply voltage.


Author(s):  
Mantas Sakalas ◽  
Niko Joram ◽  
Frank Ellinger

Abstract This study presents an ultra-wideband receiver front-end, designed for a reconfigurable frequency modulated continuous wave radar in a 130 nm SiGe BiCMOS technology. A variety of innovative circuit components and design techniques were employed to achieve the ultra-wide bandwidth, low noise figure (NF), good linearity, and circuit ruggedness to high input power levels. The designed front-end is capable of achieving 1.5–40 GHz bandwidth, 30 dB conversion gain, a double sideband NF of 6–10.7 dB, input return loss better than 7.5 dB and an input referred 1 dB compression point of −23 dBm. The front-end withstands continuous wave power levels of at least 25 and 20 dBm at low band and high band inputs respectively. At 3 V supply voltage, the DC power consumption amounts to 302 mW when the low band is active and 352 mW for the high band case, whereas the total IC size is $3.08\, {\rm nm{^2}}$ .


2013 ◽  
Vol 380-384 ◽  
pp. 3287-3291
Author(s):  
Bing Liang Yu ◽  
Xiao Ning Xie ◽  
Wen Yuan Li

A fully integrated low noise amplifier (LNA) for wireless local area network (WLAN) application is presents. The circuit is fabricated in 0.18μm SiGe BiCMOS technology. For the low noise figure, a feedback path is introduced into the traditional inductively degenerated common emitter cascade LNA, which decreases the inductance for input impedance matching, therefore reduces the thermal noise caused by loss resistor. Impedance matching and noise matching are achieved at the same time. Measured results show that the resonance point of the output resonance network shifts from 2.4GHz to 2.8GHz, due to the parasitic effects at the output. At the frequency of 2.8GHz, the LNA achieves 2.2dB noise figure, 19.4dB power gain. The core circuit consumes only 13mW from a 1.8V supply and occupies less than 0.5mm2.


2013 ◽  
Vol 336-338 ◽  
pp. 1490-1495
Author(s):  
Yong Xiang ◽  
Yan Bin Luo ◽  
Ren Jie Zhou ◽  
Cheng Yan Ma

A 1.575GHz SiGe HBT(heterojunction bipolar transistor) low-noise-amplifier(LNA) optimized for Global Positioning System(GPS) L1-band applications was presented. The designed LNA employed a common-emitter topology with inductive emitter degeneration to simultaneously achieve low noise figure and input impedance matching. A resistor-bias-feed circuit with a feedback resistor was designed for the LNA input transistor to improve the gain compression and linearity performance. The LNA was fabricated in a commercial 0.18µm SiGe BiCMOS process. The LNA achieves a noise figure of 1.1dB, a power gain of 19dB, a input 1dB compression point(P1dB) of -13dBm and a output third-order intercept point(OIP3) of +17dBm at a current consumption of 3.6mA from a 2.8V supply.


Author(s):  
Wan Yeen Ng ◽  
Xhiang Rhung Ng

This chapter aims to discuss a millimeter wave integrated circuit (MMWIC) in frequency of 30 GHz especially switch (SPDT), medium power amplifier (MPA) and low noise amplifier (LNA). The switch is developed using a commercial 0.15 µm GaAs pHEMT technology. It achieves low loss and high isolation for millimeter wave applications. The circuit and layout drawing of SPDT switch are done by using Advanced Design System (ADS) software. The layout is verified by running the Design Rules Check (DRC) to check and clear all the errors. At the operating frequency of 30 GHz, the reported SPDT switch has 1.470 dB insertion loss and 37.455 dB of isolation. It also demonstrates 26.00 dBm of input P1dB gain compression point (P1dB) and 22.975 dBm of output P1dB. At a supply voltage of 3.0 V and 30 GHz operating frequency, this two-stage LNA achieves an associated gain of 21.628 dB, noise figure (NF) of 2.509 dB and output referred 1-dB compression point (P1dB) of -11.0 dBm, the total power consumptions for the LNA is 174 mW. At a supply voltage of 6.0 V and 30 GHz operating frequency, a 2-stage MPA achieves a linear gain (S21) of 13.236 dB, P1dB of 22.5 dBm, power gain of 11.055 dB and the PAE of 14.606%. The total power consumption for the MPA is 1.122 W. The 30 GHz LNA and PA can be applied in direct broadcast satellite (DBS), automotive radar transmitter and receiver.


2021 ◽  
Vol 18 (4) ◽  
pp. 1327-1330
Author(s):  
S. Manjula ◽  
R. Karthikeyan ◽  
S. Karthick ◽  
N. Logesh ◽  
M. Logeshkumar

An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator. The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.


2013 ◽  
Vol 22 (02) ◽  
pp. 1250088 ◽  
Author(s):  
MERIAM BEN AMOR ◽  
MOURAD LOULOU ◽  
SEBASTIEN QUINTANEL ◽  
DANIEL PASQUET

In this paper we present the design of a fully integrated low noise amplifier for WiMAX standard with AMS 0.35 μm CMOS process. This LNA is designed to cover the frequency range for licensed and unlicensed bands of the WiMAX 2.3–5.9 GHz. The proposed amplifier achieves a wide band input and output matching with S11 and S22 lower than -10 dB, a flat gain of 12 dB and a noise figure around 3.5 dB for the entire band and from the upper to the higher frequencies. The presented wide band LNA employs a Chebyshev filter for input matching and an inductive shunt feedback for output matching with a bias current of 15 mA and a supply voltage of 2.5 V.


Sign in / Sign up

Export Citation Format

Share Document