pparα agonist
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 36 (6) ◽  
pp. 1243-1253
Author(s):  
Yenna Lee ◽  
Bo-Rahm Kim ◽  
Geun-Hyung Kang ◽  
Gwan Jae Lee ◽  
Young Joo Park ◽  
...  

Background: Farnesoid X receptor (FXR), a bile acid–activated nuclear receptor, is a potent regulator of glucose and lipid metabolism as well as of bile acid metabolism. Previous studies have demonstrated that FXR deficiency is associated with metabolic derangements, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD), but its mechanism remains unclear. In this study, we investigated the role of FXR in atherosclerosis and NAFLD and the effect of peroxisome proliferator-activated receptor (PPAR) agonists in mouse models with FXR deficiency.Methods: En face lipid accumulation analysis, liver histology, serum levels of glucose and lipids, and mRNA expression of genes related to lipid metabolism were compared between apolipoprotein E (ApoE)−/− and ApoE−/−FXR−/− mice. The effects of PPARα and PPARγ agonists were also compared in both groups of mice.Results: Compared with ApoE−/− mice, ApoE−/−FXR−/− mice showed more severe atherosclerosis, hepatic steatosis, and higher levels of serum cholesterol, low-density lipoprotein cholesterol, and triglycerides, accompanied by increased mRNA expression of FAS, ApoC2, TNFα, IL-6 (liver), ATGL, TGH, HSL, and MGL (adipocytes), and decreased mRNA expressions of CPT2 (liver) and Tfam (skeletal muscle). Treatment with a PPARα agonist, but not with a PPARγ agonist, partly reversed atherosclerosis and hepatic steatosis, and decreased plasma triglyceride levels in the ApoE−/−FXR−/− mice, in association with increased mRNA expression of CD36 and FATP and decreased expression of ApoC2 and ApoC3 (liver).Conclusion: Loss of FXR is associated with aggravation of atherosclerosis and hepatic steatosis in ApoE-deficient mice, which could be reversed by a PPARα agonist through induction of fatty acid uptake, β-oxidation, and triglyceride hydrolysis.


2021 ◽  
pp. 112753
Author(s):  
Xinli Han ◽  
Qianying Lv ◽  
Haimei Liu ◽  
Rufeng Dai ◽  
Jiaojiao Liu ◽  
...  

Author(s):  
Ashok Mandala ◽  
William J Chen ◽  
Austin Armstrong ◽  
Milan R Malhotra ◽  
Sanmathi Chavalmane ◽  
...  

Iron accumulation is frequently associated with chronic liver diseases. However, our knowledge on how iron contributes to the liver injury is limited. Aberrant Wnt/β-catenin signaling is a hallmark of several hepatic pathologies. We recently reported that peroxisome proliferator activated receptor alpha (PPARα) agonist, fenofibrate prevents iron induced oxidative stress and β-catenin signaling by chelating the iron. Sirtuin3 (Sirt3), a type of NAD+-dependent deacetylase that plays a critical role in metabolic regulation was found to prevent ischemia reperfusion injury by normalizing the Wnt/β-catenin pathway. In the present study, we explored if fenofibrate prevents iron induced liver injury by regulating the Sirt3 and β-catenin signaling. In-vitro and in-vivo iron treatment resulted in the downregulation of PPARα, Sirt3, active β-catenin and its downstream target gene c-Myc in the mouse liver. Pharmacological activation of Sirt3, both invitro and in vivo, by Honokiol (HK), a known activator of Sirt3, abrogated the inhibitory effect of iron overload on active β-catenin expression and prevented the iron induced upregulation of αSMA and TGFβ expression. Intrinsically, PPARα KO mice showed significant downregulation of hepatic Sirt3 levels. In addition, treatment of iron overload mice with PPARα agonist fenofibrate reduced hepatic iron accumulation and prevented iron induced downregulation of liver Sirt3 and active β-catenin, mitigating the progression of fibrosis. Thus, our results establish a novel link between hepatic iron and PPARα, Sirt3 and β-catenin signaling. Further exploration on the mechanisms by which fenofibrate ameliorates iron induced liver injury likely has significant therapeutic impact on iron associated chronic liver diseases.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3197
Author(s):  
Min Jo Kim ◽  
Dae Hyun Kim ◽  
EunJin Bang ◽  
Sang Gyun Noh ◽  
Pusoon Chun ◽  
...  

PPARα is a ligand-dependent transcription factor and its activation is known to play an important role in cell defense through anti-inflammatory and antioxidant effects. MHY3200 (2-[4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy]-2,2-difluoroacetic acid), a novel benzothiazole-derived peroxisome proliferator-activated receptor α (PPARα) agonist, is a synthesized PPARα activator. This study examined the beneficial effects of MHY3200 on age-associated alterations in reactive oxygen species (ROS)/Akt/forkhead box (FoxO) 1 signaling in rat kidneys. Young (7-month-old) and old (22-month-old) rats were treated with MHY3200 (1 mg/kg body weight/day or 3 mg/kg body weight/day) for two weeks. MHY3200 treatment led to a notable decrease in triglyceride and insulin levels in serum from old rats. The elevated kidney ROS level, serum insulin level, and Akt phosphorylation in old rats were reduced following MHY3200 treatment; moreover, FoxO1 phosphorylation increased. MHY3200 treatment led to the increased level of FoxO1 and its target gene, MnSOD. MHY3200 suppressed cyclooxygenase-2 expression by activating PPARα and inhibiting the activation of nuclear factor-κB (NF-κB) in the kidneys of old rats. Our results suggest that MHY3200 ameliorates age-associated renal inflammation by regulating NF-κB and FoxO1 via ROS/Akt signaling.


Metabolism ◽  
2021 ◽  
pp. 154798
Author(s):  
Jin Yoo ◽  
In-Kyung Jeong ◽  
Kyu Jeung Ahn ◽  
Ho Yeon Chung ◽  
You-Cheol Hwang

Author(s):  
Xue Chen ◽  
Yunhui Xu ◽  
Krista L. Denning ◽  
Audrey Grigore ◽  
Yongke Lu

Sign in / Sign up

Export Citation Format

Share Document