neuroendocrine neurons
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 1)

H-INDEX

17
(FIVE YEARS 0)

2019 ◽  
Vol 73 ◽  
pp. 217-224
Author(s):  
Magdalena Kusek ◽  
Izabela Ciurej ◽  
Krzysztof Tokarski

This paper summarizes a series of studies aimed at characterizing the effects of stress-related changes in synaptic inputs to the hypothalamic paraventricular nucleus (PVN). This structure generates an integrated physiological stress response by activating the hypothalamus-pituitary-adrenal (HPA) axis. Corticotropin-releasing hormone (CRH)-synthesizing parvocellular neuroendocrine neurons of the PVN play a key role in this process. They receive extensive excitatory and inhibitory innervation conveying information about interoceptive and exteroceptive stressful stimuli from a variety of sources within the brain. These synaptic inputs modulate the activity of PVN neurons, which regulates the amount of CRH released into the portal circulation of the anterior pituitary. It has been demonstrated that with either single or repeated stress sessions, the efficacy of excitatory and inhibitory synapses on parvocellular neuroendocrine neurons changes considerably, which may be related to repeated stress-induced sensitization of the HPA axis. The nature of these changes depends on the type of stress and its duration. Changes in synaptic inputs and the excitability of parvocellular neuroendocrine neurons are thought to be responsible for dysfunctions of the HPA axis observed in affective disorders. Assessing how this controlling function of PVN neurons is modulated in response to stress is crucial to our understanding of the pathophysiology of affective disorders.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anton Miroschnikow ◽  
Philipp Schlegel ◽  
Andreas Schoofs ◽  
Sebastian Hueckesfeld ◽  
Feng Li ◽  
...  

We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior of Drosophila larvae. Input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS. Output neurons consist of feeding motor, serotonergic modulatory and neuroendocrine neurons. Monosynaptic connections from a set of sensory synaptic compartments cover the motor, modulatory and neuroendocrine targets in overlapping domains. Polysynaptic routes are superimposed on top of monosynaptic connections, resulting in divergent sensory paths that converge on common outputs. A completely different set of sensory compartments is connected to the mushroom body calyx. The mushroom body output neurons are connected to interneurons that directly target the feeding output neurons. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.


2018 ◽  
Author(s):  
Anton Miroschnikow ◽  
Philipp Schlegel ◽  
Andreas Schoofs ◽  
Sebastian Hückesfeld ◽  
Feng Li ◽  
...  

AbstractLittle is known about the organization of central circuits by which external and internal sensory inputs act on motor outputs to regulate fundamental behaviors such as feeding. We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior ofDrosophilalarvae. The input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS, as defined by distribution patterns of their presynaptic sites. The output neurons consist of pharyngeal motor neurons, serotonergic modulatory neurons, and neuroendocrine neurons that target the ring gland, a key endocrine organ. Monosynaptic connections from a set of sensory synaptic compartments cover the motor and endocrine targets in overlapping domains. Polysynaptic routes can be superimposed on top of the monosynaptic connections, resulting in divergent sensory paths that converge on common motor outputs. A completely different set of sensory compartments is connected to the mushroom body calyx of the memory circuits. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.


2015 ◽  
Vol 226 (2) ◽  
pp. T25-T39 ◽  
Author(s):  
Alan G Watts

In November 1955, Geoffrey Harris published a paper based on the Christian A Herter Lecture he had given earlier that year at Johns Hopkins University in Baltimore, MD, USA. The paper reviewed the contemporary research that was starting to explain how the hypothalamus controlled the pituitary gland. In the process of doing so, Harris introduced a set of properties that helped define the neuroendocrine hypothalamus. They included: i) three criteria that putative releasing factors for adenohypophysial hormones would have to fulfill; ii) an analogy between the representation of body parts in the sensory and motor cortices and the spatial localization of neuroendocrine function in the hypothalamus; and iii) the idea that neuroendocrine neurons are motor neurons and the pituitary stalk functions as a Sherringtonian final common pathway through which the impact of sensory and emotional events on neuroendocrine neurons must pass in order to control pituitary hormone release. Were these properties a sign that the major neuroscientific discoveries that were being made in the early 1950s were beginning to influence neuroendocrinology? This Thematic Review discusses two main points: the context and significance of Harris's Herter Lecture for how our understanding of neuroendocrine anatomy (particularly as it relates to the control of the adenohypophysis) has developed since 1955; and, within this framework, how novel and powerful techniques are currently taking our understanding of the structure of the neuroendocrine hypothalamus to new levels.


Endocrinology ◽  
2014 ◽  
Vol 155 (2) ◽  
pp. 405-416 ◽  
Author(s):  
Arshad M. Khan ◽  
Ellen M. Walker ◽  
Nicole Dominguez ◽  
Alan G. Watts

The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)– immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2681-2688 ◽  
Author(s):  
Sathya Velmurugan ◽  
Paula J. Brunton ◽  
Gareth Leng ◽  
John A. Russell

Secretin is a 27-amino acid brain-gut peptide from duodenal S-cells. We tested the effects of systemic administration of secretin to simulate its postprandial release on neuroendocrine neurons of the supraoptic nucleus (SON) in urethane-anesthetized female rats. Secretin dose-dependently increased the firing rate of oxytocin neurons, more potently than cholecystokinin, and dose-dependently increased plasma oxytocin concentration. The effect of secretin on SON vasopressin neurons was also predominantly excitatory, in contrast to the inhibitory actions of cholecystokinin. To explore the involvement of noradrenergic inputs in secretin-induced excitation, benoxathian, an α1-adrenoceptor antagonist, was infused intracerebroventricularly. Benoxathian intracerebroventricular infusion blocked the excitation by secretin of both oxytocin and vasopressin neurons. To test the role of local noradrenaline release in the SON, benoxathian was microdialyzed onto the SON. The basal firing rate of oxytocin neurons was slightly reduced and the secretin-induced excitation was attenuated during benoxathian microdialysis. Hence, noradrenergic pathways mediate the excitation by systemic secretin of oxytocin neurons via α1-adrenoceptors in the SON. As both systemic secretin and oxytocin are involved in regulating gastrointestinal functions and natriuresis, systemically released secretin might act partly through oxytocin.


Sign in / Sign up

Export Citation Format

Share Document