estuarine exchange
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Tarang Khangaonkar ◽  
Adi Nugraha ◽  
Su Kyong Yun ◽  
Lakshitha Premathilake ◽  
Julie E. Keister ◽  
...  

Effects and impacts of the Northeast Pacific marine heatwave of 2014–2016 on the inner coastal estuarine waters of the Salish Sea were examined using a combination of monitoring data and an established three-dimensional hydrodynamic and biogeochemical model of the region. The anomalous high temperatures reached the U.S. Pacific Northwest continental shelf toward the end of 2014 and primarily entered the Salish Sea waters through an existing strong estuarine exchange. Elevated temperatures up to + 2.3°C were observed at the monitoring stations throughout 2015 and 2016 relative to 2013 before dissipating in 2017. The hydrodynamic and biogeochemical responses to this circulating high-temperature event were examined using the Salish Sea Model over a 5-year window from 2013 to 2017. Responses of conventional water-quality indicator variables, such as temperature and salinity, nutrients and phytoplankton, zooplankton, dissolved oxygen, and pH, were evaluated relative to a baseline without the marine heatwave forcing. The simulation results relative to 2014 show an increase in biological activity (+14%, and 6% Δ phytoplankton biomass, respectively) during the peak heatwave year 2015 and 2016 propagating toward higher zooplankton biomass (+14%, +18% Δ mesozooplankton biomass). However, sensitivity tests show that this increase was a direct result of higher freshwater and associated nutrient loads accompanied by stronger estuarine exchange with the Pacific Ocean rather than warming due to the heatwave. Strong vertical circulation and mixing provided mitigation with only ≈+0.6°C domain-wide annual average temperature increase within Salish Sea, and served as a physical buffer to keep waters cooler relative to the continental shelf during the marine heatwave.


2020 ◽  
Vol 125 (4) ◽  
Author(s):  
Richard E. Thomson ◽  
Evgueni A. Kulikov ◽  
David J. Spear ◽  
Sophia C. Johannessen ◽  
W. Peter Wills

2020 ◽  
Vol 50 (3) ◽  
pp. 595-613 ◽  
Author(s):  
Ted Conroy ◽  
David A. Sutherland ◽  
David K. Ralston

AbstractSmall estuaries in Mediterranean climates display pronounced salinity variability at seasonal and event time scales. Here, we use a hydrodynamic model of the Coos Estuary, Oregon, to examine the seasonal variability of the salinity dynamics and estuarine exchange flow. The exchange flow is primarily driven by tidal processes, varying with the spring–neap cycle rather than discharge or the salinity gradient. The salinity distribution is rarely in equilibrium with discharge conditions because during the wet season the response time scale is longer than discharge events, while during low flow it is longer than the entire dry season. Consequently, the salt field is rarely fully adjusted to the forcing and common power-law relations between the salinity intrusion and discharge do not apply. Further complicating the salinity dynamics is the estuarine geometry that consists of multiple branching channel segments with distinct freshwater sources. These channel segments act as subestuaries that import both higher- and lower-salinity water and export intermediate salinities. Throughout the estuary, tidal dispersion scales with tidal velocity squared, and likely includes jet–sink flow at the mouth, lateral shear dispersion, and tidal trapping in branching channel segments inside the estuary. While the estuarine inflow is strongly correlated with tidal amplitude, the outflow, stratification, and total mixing in the estuary are dependent on the seasonal variation in river discharge, which is similar to estuaries that are dominated by subtidal exchange flow.


Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 601-614 ◽  
Author(s):  
Marvin Lorenz ◽  
Knut Klingbeil ◽  
Parker MacCready ◽  
Hans Burchard

Abstract. For more than a century, estuarine exchange flow has been quantified by means of the Knudsen relations which connect bulk quantities such as inflow and outflow volume fluxes and salinities. These relations are closely linked to estuarine mixing. The recently developed Total Exchange Flow (TEF) analysis framework, which uses salinity coordinates to calculate these bulk quantities, allows an exact formulation of the Knudsen relations in realistic cases. There are however numerical issues, since the original method does not converge to the TEF bulk values for an increasing number of salinity classes. In the present study, this problem is investigated and the method of dividing salinities, described by MacCready et al. (2018), is mathematically introduced. A challenging yet compact analytical scenario for a well-mixed estuarine exchange flow is investigated for both methods, showing the proper convergence of the dividing salinity method. Furthermore, the dividing salinity method is applied to model results of the Baltic Sea to demonstrate the analysis of realistic exchange flows and exchange flows with more than two layers.


2019 ◽  
Author(s):  
Marvin Lorenz ◽  
Knut Klingbeil ◽  
Parker MacCready ◽  
Hans Burchard

Abstract. For more than a century, estuarine exchange flow has been quantified by means of the Knudsen relations which connect bulk quantities such as inflow and outflow volume fluxes and salinities. These relations are closely linked to estuarine mixing. The recently developed Total Exchange flow (TEF) which uses salinity coordinates to calculate these bulk quantities allows an exact formulation of the Knudsen relations in realistic cases. There are however numerical issues, since the original method does not converge to the TEF bulk values for an increasing number of salinity classes. In the present study, this problem is investigated and the method of dividing salinities, described by MacCready et al. (2018), is mathematically introduced. A challenging yet compact analytical scenario for a well-mixed estuarine exchange flow is investigated for both methods, showing the proper convergence of the dividing salinity method. Furthermore, the dividing salinity method is applied to model results of the Baltic Sea to demonstrate the analysis of realistic exchange flows and exchange flows with more than two layers.


2018 ◽  
Vol 48 (6) ◽  
pp. 1375-1384 ◽  
Author(s):  
Parker MacCready ◽  
W. Rockwell Geyer ◽  
Hans Burchard

AbstractThe relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.


2015 ◽  
Vol 45 (3) ◽  
pp. 638-656 ◽  
Author(s):  
Johannes Becherer ◽  
Mark T. Stacey ◽  
Lars Umlauf ◽  
Hans Burchard

AbstractCross-channel transect measurements of microstructure and velocity in a well-mixed and curved tidal inlet in the German Wadden Sea show the occurrence of significant late flood stratification. This stratification is found to be a result of lateral straining. This study observes a strong single-cell lateral circulation, which is strongly pronounced at late flood and absent during most of ebb. This tidal asymmetry is caused by a systematic interplay between centrifugal forcing and the lateral baroclinic pressure gradient. During flood a positive feedback between the terms generates strong lateral circulation, whereas during ebb a negative feedback leads to a suppression of the cross-channel exchange. A theoretical framework based on vorticity is developed, which allows lateral and longitudinal circulation to be studied in a consistent way. With this framework it is possible to show that the tidal asymmetry of the lateral flow is a major driver of residual longitudinal estuarine circulation, here identified with the tidally averaged across-channel vorticity component.


2013 ◽  
Vol 43 (8) ◽  
pp. 1572-1588 ◽  
Author(s):  
María Aristizábal ◽  
Robert Chant

Abstract The results of a numerical study of Delaware Bay using the Regional Ocean Modeling System (ROMS) are presented. The simulations are run over a range of steady river inputs and used M2 and S2 tidal components to capture the spring–neap variability. Results provide a description of the spatial and temporal structure of the estuarine exchange flow and the salinity field, as well the along-channel salt flux in the estuary. The along-channel salt flux is decomposed into an advective term associated with the river flow, a steady shear dispersion Fe associated with the estuarine exchange flow, and a tidal oscillatory salt flux Ft. Time series of Fe and Ft show that both are larger during neap tide than during spring. This time variability of Ft, which is contrary to existing scalings, is caused by the lateral flows that bring velocity and salinity out of quadrature and the stronger stratification during neap tide, which causes Ft to be enhanced relative to spring tide. A fit for the salt intrusion length L with river discharge Q for a number of isohalines is performed. The functional dependences of L with Q are significantly weaker than Q−1/3 scaling. It is concluded that the response of the salt field with river discharge is due to the dependence of Fe and Ft with Q and the relative importance of Ft to the total upstream salt flux: as river discharge increases, Fe becomes the dominant mechanism. Once Fe dominates, the salt field stiffens because of a reduction of the vertical eddy viscosity with increasing Q.


2012 ◽  
Vol 42 (10) ◽  
pp. 1617-1634 ◽  
Author(s):  
Nuvit B. Basdurak ◽  
Arnoldo Valle-Levinson

Abstract The influence of nonlinear advection on estuarine exchange flow was investigated with observations at the transition between the James River and Chesapeake Bay, Hampton Roads, Virginia. Data were collected under different tidal forcing, wind forcing, and river discharge in 2004 and 2005. The relative contribution of nonlinear advective terms to the along-channel momentum balance had the same order of magnitude as pressure gradient and friction, verifying recent analytical and numerical model results. Both the magnitude and the spatial distribution of nonlinear advection showed fortnightly variability. Nonlinear advection was more influential on along-channel flow at spring tides than at neap tides because of increased tidal velocities, in a cross-sectionally averaged sense. The flow structures induced by each nonlinear advective process were investigated for the first time with observations. The lateral advection term υuy was found to enhance laterally sheared exchange acting along with Coriolis forcing at spring tides and opposing it at neap tides. Vertical advection wuz showed similar spatial distribution as υuy at spring tides but was vertically sheared (landward at middepth and seaward in the rest of the water column) at neaps. Longitudinal advection uux augmented landward flow in the channel.


Sign in / Sign up

Export Citation Format

Share Document