seed storage reserves
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 22 (21) ◽  
pp. 12032
Author(s):  
Manpreet Kaur ◽  
Yamini Tak ◽  
Surekha Bhatia ◽  
Bavita Asthir ◽  
José M. Lorenzo ◽  
...  

Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.


2015 ◽  
Vol 169 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Mingxun Chen ◽  
Bin Zhang ◽  
Chengxiang Li ◽  
Harikrishna Kulaveerasingam ◽  
Fook Tim Chew ◽  
...  

2002 ◽  
Vol 40 (3) ◽  
pp. 337-346 ◽  
Author(s):  
C. R. McGill ◽  
J. C. McIntosh ◽  
H. A. Outred ◽  
D. W. Fountain

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 662a-662
Author(s):  
G.B. McClure ◽  
N.S. Lang

Interconversions of seed storage reserves during osmoconditioning (controlled imbibition of water) may influence seed performance under suboptimal conditions. Sweet corn (Zen mays L. cv. Florida Staysweet) storage reserve changes were examined during osmoconditioning in relation to seed germination performance. Seeds were osmoconditioned in two experiments using distilled water (duration 3, 6, 9, 12, and 24 h) and polyethylene glycol 8000 solutions (0, .5, and 1.0 MPa for 12, 24, 48, 72 and 96 h). Germination performance was evaluated at 10 and 25C, and seed moisture, carbohydrate, and protein concentrations were quantified at each water potential x duration combination. Germination performance was not significantly improved by any treatment at 25C. Germination percentage at 10C was increased 10% for seeds osmoconditioned for 24 h in distilled water, and time to germination was decreased 50%. For seeds osmoconditioned 12 and 48 h at .5 and 1.0 MPa, respectively, germination percentage at 10C was increased 15%. Time to germination was reduced 50% for seeds osmoconditioned at .5 and 1.0 MPa after 48 and 96 h, respectively. Starch levels increased for seeds osmoconditioned at higher water potentials, but remained the same or decreased at lower water potentials.


Sign in / Sign up

Export Citation Format

Share Document