scholarly journals Crosstalk during the Carbon–Nitrogen Cycle That Interlinks the Biosynthesis, Mobilization and Accumulation of Seed Storage Reserves

2021 ◽  
Vol 22 (21) ◽  
pp. 12032
Author(s):  
Manpreet Kaur ◽  
Yamini Tak ◽  
Surekha Bhatia ◽  
Bavita Asthir ◽  
José M. Lorenzo ◽  
...  

Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 662a-662
Author(s):  
G.B. McClure ◽  
N.S. Lang

Interconversions of seed storage reserves during osmoconditioning (controlled imbibition of water) may influence seed performance under suboptimal conditions. Sweet corn (Zen mays L. cv. Florida Staysweet) storage reserve changes were examined during osmoconditioning in relation to seed germination performance. Seeds were osmoconditioned in two experiments using distilled water (duration 3, 6, 9, 12, and 24 h) and polyethylene glycol 8000 solutions (0, .5, and 1.0 MPa for 12, 24, 48, 72 and 96 h). Germination performance was evaluated at 10 and 25C, and seed moisture, carbohydrate, and protein concentrations were quantified at each water potential x duration combination. Germination performance was not significantly improved by any treatment at 25C. Germination percentage at 10C was increased 10% for seeds osmoconditioned for 24 h in distilled water, and time to germination was decreased 50%. For seeds osmoconditioned 12 and 48 h at .5 and 1.0 MPa, respectively, germination percentage at 10C was increased 15%. Time to germination was reduced 50% for seeds osmoconditioned at .5 and 1.0 MPa after 48 and 96 h, respectively. Starch levels increased for seeds osmoconditioned at higher water potentials, but remained the same or decreased at lower water potentials.


2015 ◽  
Vol 169 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Mingxun Chen ◽  
Bin Zhang ◽  
Chengxiang Li ◽  
Harikrishna Kulaveerasingam ◽  
Fook Tim Chew ◽  
...  

2002 ◽  
Vol 40 (3) ◽  
pp. 337-346 ◽  
Author(s):  
C. R. McGill ◽  
J. C. McIntosh ◽  
H. A. Outred ◽  
D. W. Fountain

2012 ◽  
Vol 34 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Ísis Barreto Dantas ◽  
João Almir de Oliveira ◽  
Heloisa Oliveira dos Santos ◽  
Édila Vilela Resende Von Pinho ◽  
Sttela Dellyzete Veiga Franco da Rosa

Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.


2006 ◽  
Vol 131 (1) ◽  
pp. 164-173 ◽  
Author(s):  
J. Blasiak ◽  
A. Kuang ◽  
C.S. Farhangi ◽  
M.E. Musgrave

Seeds developing within a locular space inside hollow fruit experience chronic exposure to a unique gaseous environment. Using two pepper cultivars, `Triton' (sweet) and `PI 140367' (hot), we investigated how the development of seeds is affected by the gases surrounding them. The atmospheric composition of the seed environment was characterized during development by analysis of samples withdrawn from the fruit locule with a gas-tight syringe. As seed weight plateaued during development, the seed environment reached its lowest O2 concentration (19%) and highest CO2 concentration (3%). We experimentally manipulated the seed environment by passing different humidified gas mixtures through the fruit locule at a rate of 60 to 90 mL·min-1. A synthetic atmosphere containing 3% CO2, 21% O2, and 76% N2 was used to represent a standard seed environment. Seeds developing inside locules supplied with this mixture had enhanced average seed weight, characterized by lower variation than in the no-flow controls due to fewer low-weight seeds. The importance of O2 in the seed microenvironment was demonstrated by reduction in seed weight when the synthetic atmosphere contained only 15% O2 and by complete arrest of embryo development when O2 was omitted from the seed atmosphere. Removal of CO2 from the synthetic atmosphere had no effect on seed weight, however, the CO2-free treatment accelerated fruit ripening by 4 days in the hot pepper. In the sweet peppers, fruit wall starch and sucrose were reduced by the CO2-free treatment. The results demonstrate that accretionary seed growth is being limited in pepper by O2 availability and suggest that variation in seed quality is attributable to localized limitations in O2 supply.


2017 ◽  
Vol 7 (3) ◽  
pp. 146
Author(s):  
Astryani Rosyad ◽  
M. Rahmad Suhartanto ◽  
Abdul Qadir

<p>ABSTRACT<br />Information of seed quality during storage can be determined through the actual storage and storability vigor estimation. This study aimed at comparing effective accelerated aging method<br />between physical and chemical, and studying the seed deterioration during storage in ambient (T =28-30 0C, RH=75-78%) and AC (T =18-20 0C, RH =51-60%) condition with three levels of initial moisture content (8-10%, 10-12%, and 12-14%) for 20 weeks. The final objective of this research<br />was to develop model for storability vigor of papaya seed. Two experiments, accelerated aging and seed storage were conducted at Seed Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University from October 2015 to May 2016. A completely randomized design with nested factors and four replications was applied to both experiments. The results showed that physical accelerated aging using IPB 77-1 MMM machine was more effective than chemical accelerated aging using IPB 77-1 MM machine for papaya seed. The viability of seed stored in AC condition remained high until the end of the storage period, whereas it declined at 16 week storage period in the ambient condition. The viability of seed with initial moisture content of 12-14% declined faster than that of initial moisture content of 8-10% after 18 week storage periode. The model used to estimate the storability vigor of papaya seed accurately was the equation y = a + b expcx where y : storability vigor estimation, x : aging time and a,b,c : constant value. Simulation of storability vigor estimation with constant value of a, b, c and input of aging time can estimate storability seed vigor in actual storage.<br />Keywords: accelerated aging, IPB 77-1 MM machine, IPB 77-1 MMM machine, seed storage, simulation</p><p>ABSTRAK<br />Informasi mutu benih selama penyimpanan dapat diketahui melalui penyimpanan secara aktual dan pendugaan vigor daya simpan. Penelitian ini bertujuan untuk membandingkan metode<br />pengusangan cepat yang efektif antara fisik dengan kimia serta mempelajari pola penurunan viabilitas benih selama penyimpanan aktual pada kondisi simpan kamar (suhu =28-30 0C, RH =75-78%) dan AC (suhu =18-20 0C, RH =51-60%) dengan tiga tingkat kadar air awal (8-10%, 10-12%, dan 12-14%) selama 20 minggu. Tujuan akhirnya adalah membangun model vigor daya simpan benih pepaya. Penelitian pengusangan cepat dan penyimpanan dilakukan pada bulan Oktober 2015 sampai Mei 2016 di Laboratorium Benih, Departemen Agronomi dan Hortikultura, Institut Pertanian<br />Bogor. Kedua penelitian menggunakan rancangan acak lengkap tersarang dengan empat ulangan. Hasil penelitian menunjukkan bahwa pengusangan cepat secara fisik dengan alat IPB 77-1 MMM lebih efektif daripada pengusangan kimia dengan alat IPB 77-1 MM untuk benih pepaya. Viabilitas benih yang disimpan pada kondisi AC tetap tinggi hingga akhir periode simpan, sedangkan pada kondisi kamar penurunan viabilitas dimulai pada periode simpan 16 minggu. Benih yang disimpan dengan tingkat KA awal sebesar 12-14% lebih cepat mengalami penurunan viabilitas mulai periode simpan 18 minggu dibandingkan dengan benih dengan KA awal 8-10%. Hasil penelitian juga menunjukkan terdapat korelasi yang erat antara pola kemunduran benih pada pengusangan cepat dan penyimpanan aktual, sehingga model pendugaan vigor daya simpan (y) berdasarkan waktu pengusangan (x) dapat disusun dengan persamaan y = a + b expcx. Simulasi pendugaan vigor daya simpan dengan nilai konstanta a, b, dan c serta input waktu pengusangan dapat menduga vigor daya simpan benih selama penyimpanan aktual.<br />Kata kunci: alat IPB 77-1 MM, alat IPB 77-1 MMM, pengusangan cepat, penyimpanan benih,<br />simulasi</p>


2018 ◽  
Vol 43 (2) ◽  
pp. 345-360
Author(s):  
MA Monayem Miah ◽  
QMS Islam ◽  
ME Baksh ◽  
FJ Rossi ◽  
TP Tiwari

Small and marginal farmers have little access to improved seed from institutional sources and are thus largely excluded from the benefits of new varieties. The production and storage of improved varieties seeds at the household (HH) level can successfully overcome this problem. With this aim CSISA-CIMMYT (Cereal Systems Initiative for South Asia) project in Bangladesh have been working since 2012. Therefore, the study assessed the impacts of wheat seed storage systems at HH level, with a particular emphasis on how the poor farmers are benefited by doing the seed storage business. The study analyzed data and information collected at random from 210 supported and 60 non-supported farmers spread over three wheat growing districts namely Mymensingh, Faridpur and Rangpur. Wheat farmers used different storage containers and showed the highest level of satisfaction towards plastic sac along with poly bags and plastic/metal drum due to cost effectiveness and seed quality maintenance. On an average, supported and non-supported farmers retained respectively 103 kg and 100 kg of seed at household level, and sold most of their seeds to neighbouring farmers, local markets, and dealers. Wheat seed storage at household level was a profitable business to most of the respondent farmers. They could earn a reasonable net income (Tk.1127-Tk.1210) from seed storage. The farmers who stored seed in plastic/metal drum received the highest net income due to higher storage capacity, less storage cost, and higher seed price. The wheat storage program has created significant impacts in the study areas. A substantial increase was recorded in wheat area, wheat productivity, and financial benefit of the wheat farmers as a whole. Nevertheless, improved wheat seed is now available at farm level and most farmers become enthusiastic towards improved wheat cultivation because of this program. Respondent farmers did not face any critical problem during seed storage.Bangladesh J. Agril. Res. 43(2): 345-360, June 2018


Kultivasi ◽  
2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Anne Nuraini ◽  
Sumadi Sumadi ◽  
Muhamad Kadapi ◽  
Agus Wahyudin ◽  
Dedi Ruswandi ◽  
...  

Abstract. Seed storage is a post-harvest activity that is done to maintain the seed quality before planting. The problem often encountered in seed storage is the rapid reduction of seed quality in short period of time. Seed storability is important to maintain seed quality in good condition. The aim of this research was to find out the best seed storability of 16 genotypes of UNPAD Hybrid Maize Seeds after 4 months storage period. This research was done by identificating best seed storability after some storage period of single hybrid maize seed, namely, DR (Downey Resistance), BR, MDR (mutant of DR), and MBR (mutant of BR) which are a collection of Maize Development Team Plant Breedung Laboratory Faculty of Agri-culture Universitas Padjadjaran. This research was conducted from October 2016 until February 2017 at Seed Technology Laboratory Faculty of Agriculture Universitas Padjadjaran. Completely Randomized Design was used and repeated two times. Data were tabulated and analyzed using the F test, while to test the significant difference further were using Scott Knott test level of 5%. The result showed that there is significant difference in electrical conductivity value, 1000 grain weight, seed germination capacity, vigor index, seed growth simultaneously, and normal seedling dry weight after 4 months storage period. MDR 18.5.1, DR 17, 4BR 157, 4MDR 14.1.1  were the best genotype on seed storability after 4 months storage period.Keywords : maize, genotypes, seed storability,  storage period Sari. Penyimpanan benih merupakan kegiatan pascapanen yang dilakukan untuk memper-tahankan mutu benih hingga benih tersebut siap ditanam. Permasalahan yang sering dihadapi pada penyimpanan benih yaitu penurunan mutu benih secara cepat dalam periode yang belum terlalu lama. Tujuan dari penelitian ini adalah untuk mengetahui ketahanan simpan 16 genotip benih jagung hibrida UNPAD yang terbaik setelah periode simpan empat bulan. Penelitian ini dilakukan dengan mengiden-tifikasi ketahanan simpan terbaik setelah bebe-rapa periode simpan dari genotip benih jagung hibrida tunggal, yaitu genotip DR (Downey Resistance), BR, MDR (mutan DR), dan MBR (mutan BR) yang merupakan koleksi Tim Pengembangan Jagung Laboratorium Pemuliaan Tanaman Fakultas Pertanian Universitas Padja-djaran. Penelitian dilakukan pada bulan Oktober 2016 sampai Februari 2017 di Labora-torium Teknologi Benih Fakultas Pertanian Universitas Padjadjaran. Penelitian ini dilakukan dengan menggunakan Rancangan Acak Leng-kap (RAL) 2 ulangan. Data dianalisis mengguna-kan uji F, sedangkan perbedaan yang signifikan antar perlakuan digunakan uji Scott Knott pada taraf nyata 5%. Hasil penelitian menunjukkan terda-pat perbedaan yang signifikan pada parameter daya hantar listrik, bobot 100 butir, daya berkecambah, indeks vigor, keserempakan tum-buh, serta bobot kering kecambah normal setelah periode simpan 4 bulan. Genotip MDR 18.5.1, DR 17, 4BR 157, 4MDR 14.1.1 merupakan genotip yang memiliki ketahanan simpan  setelah periode simpan 4 bulan.Kata kunci: jagung, genotip, ketahanan simpan, periode simpan


Sign in / Sign up

Export Citation Format

Share Document