Tetracycline stress disturbs the mobilization of protein bodies in seed storage reserves during radicle elongation after seed germination

2020 ◽  
Vol 27 (33) ◽  
pp. 42150-42157
Author(s):  
Yuan Luo ◽  
Jie Liang ◽  
Guangming Zeng ◽  
Yafei Zhang ◽  
Wenle Xing ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 12032
Author(s):  
Manpreet Kaur ◽  
Yamini Tak ◽  
Surekha Bhatia ◽  
Bavita Asthir ◽  
José M. Lorenzo ◽  
...  

Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.



2017 ◽  
Vol 82 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Shuanghui Qi ◽  
Kaige Liu ◽  
Chenhao Gao ◽  
Dong Li ◽  
Changyu Jin ◽  
...  


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 662a-662
Author(s):  
G.B. McClure ◽  
N.S. Lang

Interconversions of seed storage reserves during osmoconditioning (controlled imbibition of water) may influence seed performance under suboptimal conditions. Sweet corn (Zen mays L. cv. Florida Staysweet) storage reserve changes were examined during osmoconditioning in relation to seed germination performance. Seeds were osmoconditioned in two experiments using distilled water (duration 3, 6, 9, 12, and 24 h) and polyethylene glycol 8000 solutions (0, .5, and 1.0 MPa for 12, 24, 48, 72 and 96 h). Germination performance was evaluated at 10 and 25C, and seed moisture, carbohydrate, and protein concentrations were quantified at each water potential x duration combination. Germination performance was not significantly improved by any treatment at 25C. Germination percentage at 10C was increased 10% for seeds osmoconditioned for 24 h in distilled water, and time to germination was decreased 50%. For seeds osmoconditioned 12 and 48 h at .5 and 1.0 MPa, respectively, germination percentage at 10C was increased 15%. Time to germination was reduced 50% for seeds osmoconditioned at .5 and 1.0 MPa after 48 and 96 h, respectively. Starch levels increased for seeds osmoconditioned at higher water potentials, but remained the same or decreased at lower water potentials.



2015 ◽  
Vol 169 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Mingxun Chen ◽  
Bin Zhang ◽  
Chengxiang Li ◽  
Harikrishna Kulaveerasingam ◽  
Fook Tim Chew ◽  
...  


2002 ◽  
Vol 40 (3) ◽  
pp. 337-346 ◽  
Author(s):  
C. R. McGill ◽  
J. C. McIntosh ◽  
H. A. Outred ◽  
D. W. Fountain


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Erivelton S. Roman ◽  
A. Gordon Thomas ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

The ability to predict time of weed seedling emergence relative to the crop is an important component of a mechanistic model describing weed and crop competition. In this paper, we hypothesized that the process of germination could be described by the interaction of temperature and water potential and that the rate of seedling shoot and radicle elongation vary as a function of temperature. To test these hypotheses, incubator studies were conducted using seeds and seedlings of common lambsquarters. Probit analysis was used to account for variation in cardinal temperatures and base water potentials and to develop parameters for a new mathematical model that describes seed germination and shoot and radicle elongation in terms of hydrothermal time and temperature, respectively. This hydrothermal time model describes the phenology of seed germination using a single curve, generated from the relationship of temperature and water potential.



2021 ◽  
Vol 22 (11) ◽  
Author(s):  
DWI MURTI PUSPITANINGTYAS ◽  
ELIZABETH HANDINI

Abstract. Puspitaningtyas DM, Handini E. 2021. Seed germination evaluation of Phalaenopsis amabilis in various media for long-term conservation. Biodiversitas 22: 5231-5238. Phalaenopsis amabilis (L.) Blume (moon orchid) is one of Indonesia's national flowers, which is mentioned in Presidential Decree No. 4/1993. Study on the orchid seed of P. amabilis was conducted to observe the longevity of seeds storage. The purpose of this study was to determine the viability of P. amabilis seeds after storage for years, then to predict the life span of the seeds, and to find out the best media germination for P. amabilis seeds. After harvesting, P. amabilis seeds were stored at –20 °C and the germination tests were carried out periodically in different periods until the seeds lose their viability to determine the optimum conditions for long-term seed storage. Four trial media cultures have been used to test seed germination by means of in vitro culture. The result showed that seeds of P. amabilis were able to germinate in 4 media i.e. Knudson C, modified Knudson C, modified Vacin & Went and modified leaf fertilizer. The best germination was on leaf fertilizer medium. Based on the research showed that the viability seeds of P. amabilis decreased sharply after 6 years stored. By using regression analysis, the life span of the seeds could be predicted can reach 9 years of storage which is sowing on the best media (leaf fertilizer).



2016 ◽  
Vol 4 (4) ◽  
pp. 406-413
Author(s):  
Mohammad Ali JAHANBIN ◽  
◽  
Hasan Hüseyin GEÇİT ◽  
ÜNVER İKİNCİKARAKAYA ◽  
◽  
...  


2021 ◽  
Vol 27 (3) ◽  
pp. 162-166
Author(s):  
Abdul Azeez Hussain ◽  
◽  
Ramachandra Kurup Rajvikraman ◽  

Detailed study on seed storage and germination trailed in Knema attenuata (Wall. ex Hook. f. & Thomson) Warb.– the IUCN Red Listed ‘least concern’ medicinal tree species revealed that seeds were of recalcitrant nature. Viability of the seeds could be maintained for a longer period of up to 6 months with 47% Moisture content (mc) when kept in closed polycarbonate bottles at seed bank condition [20±20C Temp. and 40% Relative Humidity (RH)]. The 55% seed germination under normal climatic condition could be enhanced to a much higher percentage (75±5) inside the mist house chamber (34±30C Temp. and 70-80% RH).



2006 ◽  
Vol 16 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Juvet Razanameharizaka ◽  
Michel Grouzis ◽  
Didier Ravelomanana ◽  
Pascal Danthu

The Adansonia (baobab) genus comprises seven species in Africa, six of which are endemic to Madagascar. Depending on the species, baobabs develop in widely varying ecosystems, including arid zones and savannahs, as well as dry and wet forests. Seeds from all species exhibited orthodox behaviour, tolerating dehydration to a moisture content of around 5%. There was no physical dormancy in the two species belonging to the Brevitubae section, A. grandidieri and A. suarezensis. Their seeds germinated without any prior scarification. The five other species, belonging to Adansonia and Longitubae section, have seeds with water-impermeable coats. In the case of A. digitata and A. za, the proportion of water-impermeable seeds was around two-thirds, whereas with A. rubrostipa, A. madagascariensis and A. perrieri, the proportion was >90%. Treatments allowing for the removal of physical dormancy needed to be markedly more severe with A. madagascariensis than with the other species. None the less, it seems impossible to link these characteristics and the interspecific differences to a strategy for adaptation by these species to their environment.



Sign in / Sign up

Export Citation Format

Share Document