scholarly journals Analysis of Equalizer Performance against Bit Error Rate in Filter Bank Multicarrier System with AWGN and Multipath Channel

2021 ◽  
Vol 183 (15) ◽  
pp. 21-25
Author(s):  
Mahdif Indiarto ◽  
Hartono Siswono
2021 ◽  
Author(s):  
Srinivas Ramavath ◽  
Umesh Chandra Samal

Abstract In this paper, two new companders are designed to reduce the ratio of peak to average power (PAPR) experienced by filter bank multicarrier (FBMC) signals. Specifically, the compander basic model is generalized, which alter the distributed FBMC signal amplitude peak. The proposed companders design approach provides better performance in terms of reducing the PAPR, Bit Error Rate (BER) and phase error degradation over the previously existing compander schemes. Many PAPR reduction approaches, such as the µ-law companding technique, are also available. It results in the formation of spectrum side lobes, although the proposed techniques result in a spectrum with fewer side lobes. The theoretical analysis of linear compander and expander transform for a few specific parameters are derived and analyzed. The suggested linear companding technique is analytically analysed using simulations to show that it efficiently decreases the high peaks in the FBMC system.


2018 ◽  
Vol 17 (7) ◽  
pp. 4888-4898 ◽  
Author(s):  
Jintae Kim ◽  
Yosub Park ◽  
Sungwoo Weon ◽  
Jinkyo Jeong ◽  
Sooyong Choi ◽  
...  

2018 ◽  
Vol 246 ◽  
pp. 03002
Author(s):  
Tianfang Dai

Combined with OFDM (Orthogonal Frequency Division Multiplexing), satellite mobile communications will effectively achieve on-demand communication in areas with an ultra-low density of users. With OFDM multiple access optimization, the bandwidth utilization efficiency can be increased by 5 to 10 times. However, satellites are power-constrained systems, so higher PAPR requires greater power backoff, resulting in a decline in satellite transmission capacity. To use OFDM technology in satellites, there are problems such as reduced transmission capacity resulted from high PAPR, complication of lowering PAPR, and difficulty in hardware implementation. In order to deal with the problem of high bit error rate and hardware implementation difficulties in PAPR reduction technique of non-orthogonal frequency division multiplexing, this paper proposes a limiting PAPR reduction technique with OFDM pilot filter banks for satellite mobile communications. Firstly, the applicability of OFDM in satellite mobile communications is analyzed, and the influence of high PAPR on satellite power utilization and the influence of frequency shift sensitivity on inter-satellite communication interference are obtained. Then design the PAPR reduction technique based on the pilot filter bank. By setting the tunable filter bank to the pilot, the sideband power suppression in the OFDM frequency domain is realized, and the PAPR of the OFDM signal is reduced. Finally, the experimental results show that the PAPR performance is improved by 3dB without reducing the bit error rate.


2016 ◽  
Vol 15 (9) ◽  
pp. 5998-6009 ◽  
Author(s):  
Hyungju Nam ◽  
Moonchang Choi ◽  
Seongbae Han ◽  
Chanhong Kim ◽  
Sooyong Choi ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 45-51
Author(s):  
Prieska Marina ◽  
Anggun Fitrian Isnawati ◽  
Mas Aly Afandi

Communication channels that are affected by various disturbances will cause a high Bit Error Rate (BER). To maximize the performance of the channel in the future, Filter Bank Multicarrier (FBMC) technique is used as a renewal of Orthogonal Frequency Division Multiplexing (OFDM). FBMC has better spectrum efficiency properties due to the nature of orthogonality which only divides bandwidth for sub-channels. The purpose of the research was to knowing the performance of FBMC Offset QAM (FBMC O-QAM) which has a variation of modulation levels of 4-QAM, 16-QAM, and 64-QAM. The Zero Forcing (ZF) method is used to detect the original signal sent by the transmitting antenna. System performance in this study was measured by parameter Bit Error Rate (BER) and channel capacity. The results showed that the FBMC O-QAM system with ZF has decreased BER value on each modulation. At the time of modulation 4 QAM has a BER value of 0.0008945 with an SNR value of 20 dB. Modulation 16 QAM also experienced the same thing when the SNR value of 20 dB has BER value of 0.001856, and at modulation 64 QAM has BER value of 0.01766 at a SNR of 20 dB. Besides decreasing the BER parameters, the FBMC O-QAM ZF system has own characterize in channel capacity. For the 4-QAM has 4.808 b/s/Hz, 16-QAM has 4.627 b/s/Hz, and 64-QAM has 3.903 b/s/Hz at SNR 20 dB. It conclude that 4-QAM has a best channel capacity enhancement. The value of channel capacity generated based on simulations using Zero Forcing shows an increase in value along with an increase in SNR, but has a smaller value compared to channel capacity in theory.


Sign in / Sign up

Export Citation Format

Share Document