peak metamorphic temperature
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 12 (2) ◽  
pp. 310-331
Author(s):  
N. I. Volkova ◽  
E. I. Mikheev ◽  
A. V. Travin ◽  
A. G. Vladimirov ◽  
A. S. Mekhonoshin ◽  
...  

The study is focused on metapelitic granulites of Cape Kaltygei (Western Baikal region) that contain a diagnostic mineral assemblage of ultrahigh temperature (UHT) metamorphic rocks (orthopyroxene+sillimanite+quartz). The pseudosection-based thermobarometry yields peak metamorphic temperature and pressure values (T=950 °C, P=~9 kbar) and suggests near-isobaric cooling (IBC) conditions during the retrograde evolution of the granulites. The U/Pb zircon age estimates for metamorphism (~1.87 Ga) support the data published by other researchers. The SHRIMP-II U-Pb dating of zircon cores yields a minimum protolith age of 1.94–1.91 Ga. Biotites and amphiboles from granulites of Cape Kaltygei show the 40Ar/39Ar isotopic ages that are close to the Early Paleozoic accretion-collision system of the Western Baikal region.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-19
Author(s):  
William L. Schmidt ◽  
John P. Platt

Abstract The Eastern Belt of the Franciscan Complex in the northern California Coast Ranges consists of coherent thrust sheets predominately made up of ocean floor sediments subducted in the Early Cretaceous and then accreted to the overriding plate at depths of 25-40 km. Progressive packet accretion resulted in the juxtaposition of a series of thrust sheets of differing metamorphic grades. This study utilizes laser Raman analysis of carbonaceous material to determine peak metamorphic temperatures across the Eastern Belt and phengite barometry to determine peak metamorphic pressures. Locating faults that separate packets in the field is difficult, but they can be accurately located based on differences in peak metamorphic temperature revealed by Raman analysis. The Taliaferro Metamorphic Complex in the west reached 323-336°C at a minimum pressure of ~11 kbar; the surrounding Yolla Bolly Unit 215–290°C; the Valentine Springs Unit 282-288°C at 7.8±0.7 kbar; the South Fork Mountain Schist 314–349°C at 8.6–9.5 kbar, a thin slice in the eastern portion of the SFMS, identified here for the first time, was metamorphosed at ~365°C and 9.7±0.7 kbar; and a slice attributed to the Galice Formation of the Western Klamath Mountains at 281±13°C. Temperatures in the Yolla Bolly Unit and Galice slice were too low for the application of phengite barometry. Microfossil fragments in the South Fork Mountain Schist are smaller and less abundant than in the underlying Valentine Springs Unit, providing an additional method of identifying the boundary between the two units. Faults that record a temperature difference across them were active after peak metamorphism while faults that do not were active prior to peak metamorphism, allowing for the location of packet bounding faults at the time of accretion. The South Fork Mountain Schist consists of two accreted packets with thicknesses of 300 m and 3.5 km. The existence of imbricate thrust faults both with and without differences in peak metamorphic temperature across them provides evidence for synconvergent exhumation.


Solid Earth ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 1099-1122 ◽  
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Marco Herwegh ◽  
Lukas Nibourel ◽  
Fritz Schlunegger

Abstract. The northwest (NW) rim of the external Aar Massif was exhumed from  ∼ 10 km depth to its present position at 4 km elevation above sea level during several Alpine deformation stages. Different models have been proposed for the timing and nature of these stages. Recently proposed exhumation models for the central, internal Aar Massif differ from the ones established in the covering Helvetic sedimentary units. By updating pre-existing maps and collecting structural data, a structural map and tectonic section were reconstructed. Those were interpreted together with microstructural data and peak metamorphic temperature estimates from collected samples to establish a framework suitable for both basement and cover. Deformation temperatures range between 250 and 330 °C, allowing for semi-brittle deformation in the basement rocks, while the calcite-dominated sedimentary rocks deform in a ductile manner at these conditions. Although field data allow to distinguish multiple deformation stages before and during Aar Massif's exhumation, all related structures formed under similar P, T conditions at the investigated NW rim. In particular, we find that the exhumation occurred during two stages of shearing in Aar Massif's basement, which induced in the sedimentary rocks first a phase of folding and then a period of thrusting, accompanied by the formation of a new foliation.


2018 ◽  
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Marco Herwegh ◽  
Lukas Nibourel ◽  
Fritz Schlunegger

Abstract. The NW rim of the external Aar Massif was exhumed from ~ 10 km depth to its present position at 4 km elevation above sea level during several Alpine deformation stages. Different models have been proposed for the timing and nature of these stages. Recently proposed exhumation models for the central, internal Aar Massif differ from the ones established in the covering Helvetic sedimentary units. By updating pre-existing maps and collecting structural data, a structural map and tectonic section was reconstructed. Those were interpreted together with micro-structural data and peak metamorphic temperature estimates from collected samples to establish a framework suitable for both basement and cover. Temperatures at deformation ranged from 250 °C to 330 °C allowing for semi-brittle deformation in the basement rocks, while the calcite dominated sediments deform ductile at these conditions. Although field data allows to distinguish multiple deformation stages before and during the Aar Massifs rise, all related structures formed under similar P, T conditions at the investigated NW rim. We find that the exhumation occurred during 2 stages of shearing in the Aar Massif basement, which induced in the sediments first a phase of folding and then a period of thrusting, accompanied by the formation of a new foliation. We can link this uplift and exhumation history to recently published large-scale block extrusion models.


1995 ◽  
Vol 32 (11) ◽  
pp. 1937-1949 ◽  
Author(s):  
Glen R. De Paoli ◽  
David R.M. Pattison

The Sullivan mine, in southeastern British Columbia, is one of the world's largest sediment-hosted, massive sulphide deposits. It has undergone at least one period of metamorphism since it was deposited in mid-Proterozoic times. Mineral textures within the deposit are predominantly of metamorphic origin. A well-constrained estimate of metamorphic conditions is required to understand how the original, depositional character of the orebody has been modified by metamorphism. Metamorphic conditions were estimated using multiequilibrium thermobarometric techniques involving silicate–carbonate–fluid equilibria. Peak metamorphic temperature constrained by calibration of the garnet–biotite Fe–Mg exchange equilibrium is 450 ± 50 °C. Lower temperature estimates from some samples are interpreted to record the temperature of cessation of garnet growth prior to the attainment of peak metamorphic temperature. Peak metamorphic pressure as determined from equilibria applicable to the assemblage garnet–biotite–muscovite–chlorite–calcite–quartz–fluid is 380 ± 100 MPa. The fluid composition accompanying this pressure estimate is [Formula: see text], [Formula: see text]. This estimate is particular to one sample and may not be representative for the deposit as a whole. Metamorphic fluids at the estimated P–T conditions would not have contained significant concentrations of C–O–H–S species other than H2O and CO2. Textural evidence and temperature–pressure results from a titanite-bearing metamorphosed mafic intrusion in the deposit suggest published titanite ages near 1330 Ma in the area of the mine represent the age of the peak metamorphic event. The results of this study carry tectonic implications for the Sullivan area, and may have application to other metamorphosed ore deposits and low-grade metamorphic settings.


1995 ◽  
Vol 59 (396) ◽  
pp. 497-504 ◽  
Author(s):  
J. V. Owen ◽  
J. D. Greenough

AbstractDetailed microprobe and modal data for a sample of layered, garnetiferous, quartzose paragneiss reveal significant differences in garnet-biotite Mg-Fe distribution coefficients (Kd) — and hence paleotemperatures — determined for leucocratic (modal Grt+Bt<25 vol.%) and mesocratic (Grt+Bt> 25 vol.%) layers. In leucocratic layers, lnKd determined from both the core and rim compositions of minerals shows a range of values that varies sympathetically with the absolute amount of garnet and biotite, and, as demonstrated in other studies, inversely with the distance separating both minerals. Due to the small size (<2 mm) of garnets, which facilitated diffusional re-equilibration during cooling from peak metamorphic temperature, lnKd does not correlate to modal Bt/Grt ratios. The largest garnets, which occur in mesocratic layers, nonetheless tend to preserve the most pronounced (retrograde) zoning patterns (i.e. rimward increase in Fe/Mg), consequently mineral core composition lnKd values correlate with grain diameter except where garnets contain abundant biotite inclusions. The highest Grt-Bt temperatures (∼700°C are recorded by: (1) the composition of relatively widely-separated (>0.3 mm) grains in highly leucocratic layers; and (2) the core compositions of relatively large (>1 mm), inclusion-free grains in mesocratic layers. More closely spaced garnets and biotites in leucocratic layers, and small grains in mesocratic layers, give a range of temperatures intermediate between Tmax and diffusional blocking temperatures (∼ 560°C) recorded by the rim compositions of contiguous grains.


Sign in / Sign up

Export Citation Format

Share Document