gravest empirical mode
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ben Moat ◽  
Eleanor Frajka-Williams ◽  
Joanne Williams ◽  
Chris Meinen

<p>Pressure Inverted Echo Sounders, sited on the seabed, indirectly measure the density of the water above them by combining pressure and travel time of an echo-sound pulse to the surface. Where the approximate structure of the water column is locally known, they can be used to select between a number of typical TS profiles (a gravest empirical mode or GEM field), providing temperature and salinity. But how accurate is this profile, and can such an instrument replace the expensive tall moorings currently used to monitor the MOC? We evaluate PIES deployments at 26N on the western boundary of the Atlantic between 2006 and 2018. We find that high-frequency (around weekly) variations in temperature are well captured by this technique, and the geostrophic part of the AMOC could be estimated in this way. However the GEM databases don't account for all low frequency variations in temperature and salinity profiles. At 26N we see for example, the results from PIES with cold bias above the thermocline and with a compensatory warm bias below it, and these biases lasting months or years. The profiles are also inaccurate at the surface, although seasonally-varying GEM fields may be helpful here. However the technique shows promise, and if it is developed further incorporating additional data sources such ARGO or as sea-surface temperature it may be possible to use it for long term monitoring of the Atlantic at 26N.</p>





Author(s):  
Sebastiaan Swart ◽  
Sabrina Speich ◽  
Isabelle J. Ansorge ◽  
Johann R. E. Lutjeharms


2005 ◽  
Vol 22 (8) ◽  
pp. 1282-1293 ◽  
Author(s):  
Jae-Hun Park ◽  
D. Randolph Watts ◽  
Karen L. Tracey ◽  
Douglas A. Mitchell

Abstract This paper demonstrates a new gravest empirical mode (GEM) technique that constructs multi-index lookup tables of temperature (T) and specific volume anomalies (δ) using historical hydrocasts as a function of three indices: round-trip travel time (τ) from sea floor to the surface, sea surface temperature, and pressure. Moreover, the historical hydrocasts are separated into non-mixed-layer (NML) and mixed-layer (ML) groups, and a single GEM field is constructed for each group. This is called the MI-GEM technique. The appropriate dates for MI-GEM fields are determined by the monthly distribution of the number of NML and ML profiles in the historical hydrocasts, which are also well correlated with the strength of the winds during the 2 yr of observations. The T and δ profiles that are determined by this MI-GEM technique capture 92% and 88% of the T and δ variances in the depth range of 0–200 db. These values reduce by about one-third of the unexplained error variance of the residual GEM, which was recently developed and applied to the optimal interpolated τ data in the southwestern Japan/East Sea (JES) by Mitchell et al. Comparisons with the in situ CTD casts demonstrate that the MI-GEM technique almost always produces improved full water column profiles of T and δ. Whereas the residual GEM estimates had exhibited qualitatively erroneous features like T inversions in the near–surface layer and too thin or thick intermediate water layers in some regions, the MI-GEM estimates avoid those problems, which were inherent to the residual GEM technique in the southwestern JES.



2004 ◽  
Vol 21 (12) ◽  
pp. 1895-1909 ◽  
Author(s):  
D. A. Mitchell ◽  
M. Wimbush ◽  
D. R. Watts ◽  
W. J. Teague

Abstract The standard gravest empirical mode (GEM) technique for utilizing hydrography in concert with integral ocean measurements performs poorly in the southwestern Japan/East Sea (JES) because of a spatially variable seasonal signal and a shallow thermocline. This paper presents a new method that combines the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) static climatology (which implicitly contains the mean seasonal signal) with historical hydrography to construct a “residual GEM” from which profiles of such parameters as temperature (T) and specific volume anomaly (δ) can be estimated from measurements of an integral quantity such as geopotential height or acoustic echo time (τ). This is called the residual GEM technique. In a further refinement, sea surface temperature (SST) measurements are included in the profile determinations. In the southwestern JES, profiles determined by the standard GEM technique capture 70% of the T variance and 64% of the δ variance, while the residual GEM technique using SST captures 89% of the T variance and 84% of the δ variance. The residual GEM technique was applied to optimally interpolated τ measurements from a two-dimensional array of pressure-gauge-equipped inverted echo sounders moored from June 1999 to July 2001 in the southwestern JES, resulting in daily 3D estimated fields of T and δ throughout the region. These estimates are compared with those from direct measurements and good agreement is found between them.





2001 ◽  
Vol 106 (C2) ◽  
pp. 2833-2855 ◽  
Author(s):  
Che Sun ◽  
D. Randolph Watts


Sign in / Sign up

Export Citation Format

Share Document