aromatic interactions
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 44)

H-INDEX

59
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Sartore ◽  
Davide Bassani ◽  
Eugenio Ragazzi ◽  
Pietro Traldi ◽  
Annunziata Lapolla ◽  
...  

AbstractThe worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3563
Author(s):  
Felipe Orozco ◽  
Thomas Hoffmann ◽  
Mario E. Flores ◽  
Judit G. Lisoni ◽  
José Roberto Vega-Baudrit ◽  
...  

The polyelectrolyte poly(sodium 4-styrenesulfonate) undergoes aromatic–aromatic interaction with the drug chlorpheniramine, which acts as an aromatic counterion. In this work, we show that an increase in the concentration in the dilute and semidilute regimes of a complex polyelectrolyte/drug 2:1 produces the increasing confinement of the drug in hydrophobic domains, with implications in single chain thermodynamic behavior. Diafiltration analysis at polymer concentrations between 0.5 and 2.5 mM show an increase in the fraction of the aromatic counterion irreversibly bound to the polyelectrolyte, as well as a decrease in the electrostatic reversible interaction forces with the remaining fraction of drug molecules as the total concentration of the system increases. Synchrotron-SAXS results performed in the semidilute regimes show a fractal chain conformation pattern with a fractal dimension of 1.7, similar to uncharged polymers. Interestingly, static and fractal correlation lengths increase with increasing complex concentration, due to the increase in the amount of the confined drug. Nanoprecipitates are found in the range of 30–40 mM, and macroprecipitates are found at a higher system concentration. A model of molecular complexation between the two species is proposed as the total concentration increases, which involves ion pair formation and aggregation, producing increasingly confined aromatic counterions in hydrophobic domains, as well as a decreasing number of charged polymer segments at the hydrophobic/hydrophilic interphase. All of these features are of pivotal importance to the general knowledge of polyelectrolytes, with implications both in fundamental knowledge and potential technological applications considering aromatic-aromatic binding between aromatic polyelectrolytes and aromatic counterions, such as in the production of pharmaceutical formulations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihua Wang ◽  
Qiuke Li ◽  
Jinze Li ◽  
Jiawei Li ◽  
Lu Shang ◽  
...  

Antibiotic resistance is emerging as a hot issue with the abuse and overuse of antibiotics, and the shortage of effective antimicrobial agents against multidrug resistant bacteria creates a huge problem to treat the threatening nosocomial skin and soft tissue infection. Antimicrobial peptides (AMPs) exhibite enormous potential as one of the most promising candidates of antibiotic to fight against pathogenic infections because of its unique membrane penetration mechanism to kill pathogens, whereas the clinical application of AMPs still faces the challenges of production cost, stability, safety, and design strategy. Herein, a series of Trp-rich peptides was designed following the principle of paired Trp plated at the ith and ith+4 position on the backbone of peptides, based on the template (VKKX)4, where X represents W, A, or L, to study the effect of intramolecular aromatic interactions on the bioactivity of AMPs. Through comparing the antimicrobial performance, hemolysis, cytotoxicity, and stability, VW5 which is equipped with the characters of direct antimicrobial efficacy (GM=1.68μM) and physical destruction of bacterial membrane (SEM and electron microscopy) stood out from the engineering peptides. VW5 also performed well in mice models, which could significantly decrease the bacterial colony (VW5 vs infection group, 12.72±2.26 vs 5.52±2.01×109CFU/abscess), the area of dermo-necrosis (VW5 vs infection group, 0.74±0.29 vs 1.86±0.98mm2) and the inflammation cytokine levels at the abscess site without causing toxicity to the skin. Overall, this study provides a strategy and template to diminish the randomness in the exploration and design of novel peptides.


2021 ◽  
Vol 28 ◽  
Author(s):  
Andrés González Santana ◽  
Laura Díaz-Casado ◽  
Laura Montalvillo ◽  
Ester Jiménez-Moreno ◽  
Enrique Mann ◽  
...  

: Aromatic platforms are ubiquitous recognition motifs occurring in protein carbohydrate binding domains (CBDs), RNA receptors and enzymes. They stabilize the glycoside/receptor complexes by participating in stacking CH/ interactions with either the - or - face of the corresponding pyranose units. In addition, the role played by aromatic units in the stabilization of glycoside cationic transition states has started being recognized in recent years. Extensive studies carried out during the last decade have allowed to dissect the main contributing forces that stabilize the carbohydrate/aromatic complexes, while helping delineate not only the standing relationship between the glycoside/aromatic chemical structures and the strength of this interaction, but also their potential influence on glycoside reactivity.


Author(s):  
Mario E. Flores ◽  
Daniel Ancalaf ◽  
Aldo Rolleri ◽  
Hiroyuki Nishide ◽  
Judit G. Lisoni ◽  
...  

Author(s):  
Michela Romanini ◽  
Ivo. B. Rietveld ◽  
Maria Barrio ◽  
Philippe Negrier ◽  
Denise Mondieig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document