Effect of PPARGC1A on the development and metabolism of early rabbit embryos in vitro

2019 ◽  
Vol 86 (11) ◽  
pp. 1758-1770 ◽  
Author(s):  
Guo‐Min Zhang ◽  
Yi‐Xuan Guo ◽  
Ming‐Tian Deng ◽  
Yong‐Jie Wan ◽  
Kai‐Ping Deng ◽  
...  
Keyword(s):  

Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.



Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.



2014 ◽  
Vol 46 ◽  
pp. 46-55 ◽  
Author(s):  
Robert G. Ellis-Hutchings ◽  
Nigel P. Moore ◽  
Valerie A. Marshall ◽  
Reza J. Rasoulpour ◽  
Edward W. Carney
Keyword(s):  


1992 ◽  
Vol 37 (1) ◽  
pp. 185 ◽  
Author(s):  
P.G. Adenot ◽  
Y. Heyman ◽  
P. Chesné ◽  
V.H. Rao ◽  
J.P. Renard


1998 ◽  
Vol 49 (1) ◽  
pp. 325 ◽  
Author(s):  
C.S. Park ◽  
B.G. Jeon ◽  
K.M. Lee ◽  
X.J. Yin ◽  
S.K. Cho ◽  
...  


Zygote ◽  
2020 ◽  
Vol 28 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Babett Bontovics ◽  
Pouneh Maraghechi ◽  
Bence Lázár ◽  
Mahek Anand ◽  
Kinga Németh ◽  
...  

SummaryDual inhibition (2i) of Ras–MEK–ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.



Reproduction ◽  
1975 ◽  
Vol 45 (1) ◽  
pp. 151-153 ◽  
Author(s):  
G. B. ANDERSON ◽  
R. H. FOOTE
Keyword(s):  


Reproduction ◽  
2004 ◽  
Vol 128 (5) ◽  
pp. 517-526 ◽  
Author(s):  
Anne Navarrete Santos ◽  
Sarah Tonack ◽  
Michaela Kirstein ◽  
Marie Pantaleon ◽  
Peter Kaye ◽  
...  

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.



Sign in / Sign up

Export Citation Format

Share Document