differential mobility spectrometry
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Jussi Virtanen ◽  
Anna Anttalainen ◽  
Jaakko Ormiskangas ◽  
Markus Karjalainen ◽  
Anton Kontunen ◽  
...  

Abstract Over the last few decades, breath analysis using electronic nose technology has become a topic of intense research, as it is both non-invasive and painless, and is suitable for point-of-care use. To date, however, only a few studies have examined nasal air. As the air in the oral cavity and the lungs differs from the air in the nasal cavity, it is unknown whether aspirated nasal air could be exploited with electronic nose technology. Compared to traditional electronic noses, differential mobility spectrometry uses an alternating electrical field to discriminate the different molecules of gas mixtures, providing analogous information. This study reports the collection of nasal air by aspiration and the subsequent analysis of the collected air using a differential mobility spectrometer. We collected nasal air from ten volunteers into breath collecting bags and compared them to bags of room air and the air aspirated through the device. Distance and dissimilarity metrics between the sample types were calculated and statistical significance evaluated with Kolmogorov-Smirnov test. After leave-one-day-out cross-validation, a shrinkage linear discriminant classifier was able to correctly classify 100% of the samples. The nasal air differed (p < 0.05) from the other sample types. The results show the feasibility of collecting nasal air by aspiration and subsequent analysis using differential mobility spectrometry, and thus increases the potential of the method to be used in disease detection studies.


Talanta ◽  
2021 ◽  
Vol 225 ◽  
pp. 121926
Author(s):  
Anna Anttalainen ◽  
Meri Mäkelä ◽  
Pekka Kumpulainen ◽  
Antti Vehkaoja ◽  
Osmo Anttalainen ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Christian Ieritano ◽  
J. Larry Campbell ◽  
Scott Hopkins

Although there has been a surge in popularity of differential mobility spectrometry (DMS) within analytical workflows, determining separation conditions within the DMS parameter space still requires manual optimization. A means...


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Anton Kontunen ◽  
Ulla Karhunen-Enckell ◽  
Markus Karjalainen ◽  
Anna Anttalainen ◽  
Pekka Kumpulainen ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Peter E. Fowler ◽  
Jacob Zachary Pilgrim ◽  
Marlen Menlyadiev ◽  
Gary A Eiceman

Endothermic displacement reactions between proton bound dimers of organophosphorus compounds (OPCs) and isopropanol (IPA) were enabled in air at ambient pressure with tandem differential mobility spectrometry (DMS). Proton bound dimers...


Sign in / Sign up

Export Citation Format

Share Document