cooperative object manipulation
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 131 ◽  
pp. 103600
Author(s):  
Ramin Jaberzadeh Ansari ◽  
Giuseppe Giordano ◽  
Jonas Sjöberg ◽  
Yiannis Karayiannidis

2019 ◽  
pp. 303-346 ◽  
Author(s):  
Dragomir N. Nenchev ◽  
Atsushi Konno ◽  
Teppei Tsujita

Author(s):  
Michael Gienger ◽  
Dirk Ruiken ◽  
Tamas Bates ◽  
Mohamed Regaieg ◽  
Michael MeiBner ◽  
...  

Author(s):  
Payam Zarafshan ◽  
Reza Larimi ◽  
S. Ali A. Moosavian ◽  
Bruno Siciliano

Purpose The purpose of this paper is to present a comparison study of cooperative object manipulation control algorithms. To this end, a full comprehensive survey of the existing control algorithms in this field is presented. Design/methodology/approach Cooperative manipulation occurs when manipulators are mechanically coupled to the object being manipulated, and the manipulators may not be treated as an isolated system. The most important and basic impedance control (IC) strategies for an assumed cooperative object manipulation task are the Augmented Object Model (AOM) control and the multiple impedance control (MIC) which are found based on the IC, where the former is designed based on the object movement, and the latter is designed based on the whole robot movement. Thus, the basis of these two algorithms are fully studied. Findings The results are fully analyzed, and it is practically verified that the MIC algorithm has the better performance. In fact, the results reveal that the MIC system could successfully perform the object manipulation task, as opposed to the AOM controller: for the same controller gains, the MIC strategy showed better performance than the AOM strategy. This means that because there is no control on the robot base with the AOM algorithm, the object manipulation task cannot be satisfactorily performed whenever the desired path is not within the robot work space. On the other hand, with the MIC algorithm, satisfactory object manipulation is achieved for a mobile robotic system in which the robot base, the manipulator endpoints and the manipulated object shall be moved. Practical implications A simple conceptual model for cooperative object manipulation is considered, and a suitable setup is designed for practical implementation of the two ICs. Originality/value The basis of these two aspects or these two algorithms is fully studied and compared which is the foundation of this paper. For this purpose, a case study is considered, in which a space free-flying robotic system, which contains two 2-degrees of freedom planar cooperative manipulators, is simulated to manipulate an object using the above control strategies. The system also includes a rotating antenna and camera as its third and fourth arm. Finally, a simple conceptual model for cooperative object manipulation is considered, and a suitable setup is designed for practical implementation of the two ICs.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
P. Zarafshan ◽  
S. Ali A. Moosavian

Modelling and control of rigid-flexible multibody systems is studied in this paper. As a specified application, a space robotic system with flexible appendages during a cooperative object manipulation task is considered. This robotic system necessitates delicate force exertion by several end-effectors to move an object along a desired path. During such maneuvers, flexible appendages like solar panels may get stimulated and vibrate. This vibrating motion will cause some oscillatory disturbing forces on the spacecraft, which in turn produces error in the motion of the end-effectors of the cooperative manipulating arms. In addition, vibration control of these flexible members to protect them from fracture is another challenging problem in an object manipulation task for the stated systems. Therefore, the multiple impedance control algorithm is extended to perform an object manipulation task by such complicated rigid-flexible multibody systems. This extension in the control algorithm considers the modification term which compensates the disturbing forces due to vibrating motion of flexible appendages. Finally, a space free-flying robotic system which contains two 2-DOF planar cooperative manipulators, appended with two highly flexible solar panels, is simulated. Obtained results reveal the merits of the developed model-based controller which will be discussed.


Sign in / Sign up

Export Citation Format

Share Document