scholarly journals Margin-to-Margin Seafloor Spreading in the Eastern Gulf of Aden: A 16 Ma-Long History of Deformation and Magmatism from Seismic Reflection, Gravity and Magnetic Data

2021 ◽  
Vol 9 ◽  
Author(s):  
Morgane Gillard ◽  
Sylvie Leroy ◽  
Mathilde Cannat ◽  
Heather Sloan

In this paper we present and analyze spreading-parallel seismic transects that image the oceanic crust in the eastern Gulf of Aden, from the Oman to the Socotra margins, across the active Sheba mid-oceanic ridge and between the Socotra-Hadbeen and Eastern Gulf of Aden Fracture Zones. The correlation of potential field data sets and gravity modelling allow us to document the spreading history of this oceanic basin from the onset of seafloor spreading ∼16 Ma-ago to the present. Two main oceanic sub-domains display distinct structural characteristics associated with different magmatic budgets at this mid-ocean ridge. In addition, we document the occurrence of a magmatic pulse at the Sheba Ridge around 11 Ma leading to the construction of a magmatic plateau in the western part of the studied area. This event led to substantial deformation and additional magmatism in previously formed oceanic crust. It could be related to an off-axis magmatic event previously identified in the adjacent Sheba segment, itself possibly related to the Afar plume.

Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Nicole Debeglia ◽  
Jacques Corpel

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.


1994 ◽  
Vol 34 (1) ◽  
pp. 529 ◽  
Author(s):  
G.W. O'Brien ◽  
C.V. Reeves ◽  
P.R. Milligan ◽  
M.P. Morse ◽  
E.M. Alexander ◽  
...  

The integration of high resolution, image-processed aeromagnetic data with regional geological, magnetic, gravity and seismic data-sets has provided new insights into the structural architecture, rifting history, and petroleum potential of the western onshore and offshore Otway Basin, south-eastern Australia.Three principal structural directions are evident from the magnetic data: NS, NE-ENE and NW-WNW. The structural fabric and regional geological data suggest that the rifting history of the basin may have taken place in two distinct stages, rather than within a simple rift-to-drift framework. The initial stage, from 150 to ~120 Ma, took place within a stress regime dominated by NW-SE extensional transport, similar to that of the basins within the Great Australian Bight to the west. ENE-striking extensional rift segments, such as the Crayfish Platform-Robe Trough and the Torquay Sub-Basin, developed during this period, contemporaneous with the deposition of thick sediments of the Early Cretaceous (Tithonian-Hauterivian) Crayfish Subgroup. In other parts of the basin, NW-striking rift segments, such as the Penola, and perhaps Ardonachie, Troughs onshore, developed within a strongly trans-tensional (left-lateral strike-slip) environment. At ~120 Ma, the regional stress field changed, and the Crayfish Subgroup-aged rift segments were reactivated, with uplift and block faulting extending through to perhaps 117 Ma. Rifting then recommenced at about 117 Ma (contemporaneous with the deposition of the Barremian-Albian Eumeralla Formation), though the extensional transport direction was now oriented NNE-SSW, almost perpendicular to that of the earlier Crayfish Subgroup rift stage. This later rift episode ultimately led to continental breakup at ~96 Ma and produced the 'traditional' normal fault orientations (NW-SE to WNW-ESE) throughout the Otway Basin.


2011 ◽  
Vol 51 (2) ◽  
pp. 746
Author(s):  
Irina Borissova ◽  
Gabriel Nelson

In 2008–9, under the Offshore Energy Security Program, Geoscience Australia (GA) acquired 650 km of seismic data, more than 3,000 km of gravity and magnetic data, and, dredge samples in the southern Carnarvon Basin. This area comprises the Paleozoic Bernier Platform and southern part of the Mesozoic Exmouth Sub-basin. The new seismic and potential field data provide a new insight into the structure and sediment thickness of the deepwater southernmost part of the Exmouth Sub-basin. Mesozoic depocentres correspond to a linear gravity low, in water depths between 1,000–2,000 m and contain between 2–3 sec (TWT) of sediments. They form a string of en-echelon northeast-southwest oriented depressions bounded by shallow-dipping faults. Seismic data indicates that these depocentres extend south to at least 24°S, where they become more shallow and overprinted by volcanics. Potential plays in this part of the Exmouth Sub-basin may include fluvio-deltaic Triassic sandstone and Lower–Middle Jurassic claystone source rocks sealed by the regional Early Cretaceous Muderong shale. On the adjoining Bernier Platform, minor oil shows in the Silurian and Devonian intervals at Pendock–1a indicate the presence of a Paleozoic petroleum system. Ordovician fluvio-deltaic sandstones sealed by the Silurian age marine shales, Devonian reef complexes and Miocene inversion anticlines are identified as potential plays. Long-distance migration may contribute to the formation of additional plays close to the boundary between the two provinces. With a range of both Mesozoic and Paleozoic plays, this under-explored region may have a significant hydrocarbon potential.


2016 ◽  
Vol 4 (3) ◽  
pp. SP67-SP77 ◽  
Author(s):  
Yan Qiu ◽  
Yingmin Wang ◽  
Wenkai Huang ◽  
Weiguo Li ◽  
Haiteng Zhuo ◽  
...  

The South China Sea is one of the largest marginal seas in the Western Pacific region, and it has been widely accepted that the evolution of the basin and the development of its oceanic crusts is closely linked to seafloor spreading. A great controversy, however, is around whether or not there was a jump of mid-ocean ridges during seafloor spreading, particularly in the eastern South China Sea subbasin. A tectonostratigraphic interpretation using high-resolution seismic data demonstrated that: (1) a southward jump event of the mid-ocean ridge took place in the eastern subbasin during the seafloor spreading; (2) the orientation of the mid-ocean ridge had dramatically changed after the event resulting in that the abandoned mid-ocean ridge is along an east–west direction, whereas the younger one is generally east–northeast/west–southwest oriented; (3) the corresponding surface caused by the jump tectonic event and the pre-event sequence can be traced throughout the earlier formed oceanic crust; and (4) paleo-magnetic data showed that the event occurred at approximately 25–23.8 Ma. The results of this study could be used to better understand the evolution and filling of the South China Sea and other associated marginal basins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Kelemework ◽  
M. Milano ◽  
M. La Manna ◽  
G. de Alteriis ◽  
M. Iorio ◽  
...  

AbstractWe present a 3D model of the main crustal boundaries beneath the Campanian region and the onshore and offshore surrounding areas, based on high-resolution potential field data. Our main objective is the definition of the main structural interfaces in the whole Campanian region from gravity and magnetic data, thanks to their ability to define them on a regional and continuous way. The complex morphology of the Mesozoic carbonate platform, which is fundamental to constrain the top of geothermal reservoir, was reconstructed by inverting the vertical gradient of gravity. We assumed local information from seismic models and boreholes to improve the model. We modeled the deep crustal structures by spectral analysis of Bouguer gravity and magnetic data. The inferred depth estimates indicate a shallow crystalline basement below the Tyrrhenian crust and the Apulian foreland and a significant depression beneath the Bradanic foredeep. The map of the Moho boundary shows a NE-SE verging trough below the Southern Apennine chain and two pronounced uplifts beneath the foreland and the Tyrrhenian crust. We also estimated the depth to the magnetic bottom, showing a thick magnetic crust below the mountain chain and shallow depths where the crustal heat flow is high. The models were compared with seismic sections along selected profiles; a good agreement was observed, despite of some inherent lower resolution for the gravity modelling from spectral methods. The regional covering and the continuity of our estimated crustal interfaces make it a new and valid reference for further geological, geophysical and geothermal studies, especially in areas such as northern and eastern Campania, where there is an incomplete geophysical and geological information.


2020 ◽  
Author(s):  
Kirill Kuznetsov ◽  
Bulychev Andrey ◽  
Ivan Lygin

<p>Studies of the Earth’s interior structure are one of the most complex topics in modern science. Integration of different geophysical methods plays a key role in effectively tackling the problem. In the last decade capabilities of potential field geophysical methods have been increasing due to development of advanced digital technologies. Improved resolution and accuracy of gravity and magnetic fields measurements made by modern equipment makes it possible to build more detailed geological models. Different tectonic and structural elements being interpreted in such models produce potential field signals with different spectral characteristics. Like any geophysical signals, potential fields can be described as a spatially non-stationary signal. This means its frequency content may change depending on a given signal sample, in particular with different spatial location of a sample. In this case, approaches of gravity and magnetic fields analysis based on Fourier transform or signal decomposition into a number of harmonic functions can lead to incorrect results. One of the ways to solve this challenge involves using wavelet transform based algorithms, since these transforms do not assume stationary signals and each function of a wavelet-based basis is localized in space domain.</p><p>In gravity and magnetic data analysis it is beneficial to use wavelets based on partial derivatives of the Poisson kernel, which correspond to derivatives of a point source gravity potential. Application of Poisson wavelets in potential field data analysis has begun in the 1990's and is predominantly aimed at studying gravity and magnetic fields singularity points during data interpretation.</p><p>Similar to Fourier-based potential field techniques, it is possible to construct a number of data filtering algorithms based on Poisson wavelets. Current work demonstrates that it is possible to construct algorithms based on Poisson wavelets for transforming profile and spatially gridded gravity and magnetic data, e.g. for calculation of equivalent density and magnetization distributions, upward and downward continuations, reduction to pole and many other filters that take into account spatial distribution of the signal.</p><p>Wavelet-transforms allow to account for spatially non-stationary nature of geophysical signals. Use of wavelet based techniques allows to effectively carry out potential field data interpretation in a variety of different geologic and tectonic settings in a consistent fashion.</p>


Geophysics ◽  
1971 ◽  
Vol 36 (5) ◽  
pp. 856-866 ◽  
Author(s):  
Roland G. Henderson ◽  
Lindrith Cordell

Conventional reductions of gravity and magnetic data do not lead to values that are effectively on the same horizontal plane, although it is common practice to regard them so. In regions of high topographic relief, failure to take into account local differences in vertical gradients can result in appreciable error. In this study a method is developed for reducing to a common level gravity or magnetic anomaly data observed at unevenly spaced stations at various elevations above a reference plane. The reduction is effected by means of finite harmonic series approximations in which the coefficients are determined by matrix methods and least squares. Traditional Fourier methods are not applicable because uneven station spacing and relative vertical displacement of stations preclude the use of the orthogonality properties of the trigonometric functions. The number of terms required to represent the data adequately is discussed in terms of “cutoff” wavenumbers empirically determined from residual variance estimates. The method is illustrated by application to theoretical and field data.


1978 ◽  
Vol 15 (9) ◽  
pp. 1462-1471 ◽  
Author(s):  
K. D. Sullivan ◽  
C. E. Keen

This paper presents new seismic reflection, refraction, gravity, and magnetic data bearing on the nature of the crust in the vicinity of the Newfoundland Ridge and the J-anomaly Ridge, immediately south of the Grand Banks. This area experienced a complicated plate tectonic history being the focal point for interactions of the North American, African, and Iberian plates. New data have recently been published for this region and conflicting interpretations have been offered in relation to the oceanic or continental origin of the crust there. The data presented here show that the seismic structure and the most reasonable models for the magnetic anomalies are more consistent with an oceanic origin. The trends and offsets in the magnetic lineations and possible differences in subsidence, north and south of the Newfoundland Ridge, are discussed in relation to possible modes of formation of this feature. It is proposed that similar subsidence histories since mid-Cretaceous time on the Grand Banks and J-anomaly Ridge are related to a similarity in the thermal history of the lithosphere beneath these areas, as the ridge crest migrated eastwards, and do not require the same type of crust to underlie both areas.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 641-644 ◽  
Author(s):  
Richard J. Davies ◽  
Christopher J. MacLeod ◽  
Richard Morgan ◽  
Sepribo E. Briggs

Abstract We describe the first three-dimensional imaging of the termination of a continent-ocean fracture zone (COFZ), the Chain Fracture Zone, located offshore of the Niger Delta. The COFZ marks the abrupt transition between extended continental crust, comprising multiple half-graben, and oceanic crust that has a pervasive seafloor-spreading fabric. It preserves a history of continent-continent shearing followed by oceanic crust accretion and continent-ocean shearing during the inception of Atlantic rifting. The termination is marked by steeply dipping faults with sigmoidal planform and thrusts that probably formed as a result of continent-continent or continent-ocean shearing. These are crosscut by the seafloor-spreading fabric that formed during the subsequent phase of oceanic crust accretion. The accreted oceanic crust is cut by listric and planar faults that curve in the direction of the COFZ, where they terminate. The transition from continental to oceanic crust across the COFZ is sharp and resolvable to ∼100–200 m. Complexes of lava flows emanate from volcanoes along the COFZ, bifurcating and trifurcating down the volcano flanks. The volcanoes are 2–5.5 km wide and 1.4 km in height relative to adjacent oceanic crust and were injected at the COFZ, probably as the spreading center migrated along it.


Sign in / Sign up

Export Citation Format

Share Document