variational algorithms
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Ajinkya Borle ◽  
Vincent Elfving ◽  
Samuel J. Lomonaco

The quantum approximate optimization algorithm (QAOA) by Farhi et al. is a quantum computational framework for solving quantum or classical optimization tasks. Here, we explore using QAOA for binary linear least squares (BLLS); a problem that can serve as a building block of several other hard problems in linear algebra, such as the non-negative binary matrix factorization (NBMF) and other variants of the non-negative matrix factorization (NMF) problem. Most of the previous efforts in quantum computing for solving these problems were done using the quantum annealing paradigm. For the scope of this work, our experiments were done on noiseless quantum simulators, a simulator including a device-realistic noise-model, and two IBM Q 5-qubit machines. We highlight the possibilities of using QAOA and QAOA-like variational algorithms for solving such problems, where trial solutions can be obtained directly as samples, rather than being amplitude-encoded in the quantum wavefunction. Our numerics show that even for a small number of steps, simulated annealing can outperform QAOA for BLLS at a QAOA depth of p\leq3p≤3 for the probability of sampling the ground state. Finally, we point out some of the challenges involved in current-day experimental implementations of this technique on cloud-based quantum computers.


Author(s):  
Eliott Rosenberg ◽  
Paul Ginsparg ◽  
Peter L. McMahon

Abstract Quantum computers have the potential to help solve a range of physics and chemistry problems, but noise in quantum hardware currently limits our ability to obtain accurate results from the execution of quantum-simulation algorithms. Various methods have been proposed to mitigate the impact of noise on variational algorithms, including several that model the noise as damping expectation values of observables. In this work, we benchmark various methods, including a new method proposed here. We compare their performance in estimating the ground-state energies of several instances of the 1D mixed-field Ising model using the variational-quantum-eigensolver algorithm with up to 20 qubits on two of IBM's quantum computers. We find that several error-mitigation techniques allow us to recover energies to within 10% of the true values for circuits containing up to about 25 ansatz layers, where each layer consists of CNOT gates between all neighboring qubits and Y-rotations on all qubits.


2021 ◽  
Vol 23 (11) ◽  
pp. 113021
Author(s):  
Hsin-Yuan Huang ◽  
Kishor Bharti ◽  
Patrick Rebentrost

Abstract Solving linear systems of equations is essential for many problems in science and technology, including problems in machine learning. Existing quantum algorithms have demonstrated the potential for large speedups, but the required quantum resources are not immediately available on near-term quantum devices. In this work, we study near-term quantum algorithms for linear systems of equations, with a focus on the two-norm and Tikhonov regression settings. We investigate the use of variational algorithms and analyze their optimization landscapes. There exist types of linear systems for which variational algorithms designed to avoid barren plateaus, such as properly-initialized imaginary time evolution and adiabatic-inspired optimization, suffer from a different plateau problem. To circumvent this issue, we design near-term algorithms based on a core idea: the classical combination of variational quantum states (CQS). We exhibit several provable guarantees for these algorithms, supported by the representation of the linear system on a so-called ansatz tree. The CQS approach and the ansatz tree also admit the systematic application of heuristic approaches, including a gradient-based search. We have conducted numerical experiments solving linear systems as large as 2300 × 2300 by considering cases where we can simulate the quantum algorithm efficiently on a classical computer. Our methods may provide benefits for solving linear systems within the reach of near-term quantum devices.


2021 ◽  
Author(s):  
Xiaosi Xu ◽  
Jinzhao Sun ◽  
Suguru Endo ◽  
Ying Li ◽  
Simon C. Benjamin ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
William J. Huggins ◽  
Jarrod R. McClean ◽  
Nicholas C. Rubin ◽  
Zhang Jiang ◽  
Nathan Wiebe ◽  
...  

AbstractVariational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low-rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling nonlocal Jordan–Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground-state energies of strongly correlated electronic systems.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


2021 ◽  
Vol 40 (4) ◽  
pp. 897-929
Author(s):  
Julia Plewa ◽  
Joanna Sieńko ◽  
Katarzyna Rycerz

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1263
Author(s):  
Sean Plummer ◽  
Debdeep Pati ◽  
Anirban Bhattacharya

Variational algorithms have gained prominence over the past two decades as a scalable computational environment for Bayesian inference. In this article, we explore tools from the dynamical systems literature to study the convergence of coordinate ascent algorithms for mean field variational inference. Focusing on the Ising model defined on two nodes, we fully characterize the dynamics of the sequential coordinate ascent algorithm and its parallel version. We observe that in the regime where the objective function is convex, both the algorithms are stable and exhibit convergence to the unique fixed point. Our analyses reveal interesting discordances between these two versions of the algorithm in the region when the objective function is non-convex. In fact, the parallel version exhibits a periodic oscillatory behavior which is absent in the sequential version. Drawing intuition from the Markov chain Monte Carlo literature, we empirically show that a parameter expansion of the Ising model, popularly called the Edward–Sokal coupling, leads to an enlargement of the regime of convergence to the global optima.


Sign in / Sign up

Export Citation Format

Share Document