scholarly journals Natural Selection Determines Synonymous Codon Usage Patterns of Neuraminidase (NA) Gene of the Different Subtypes of Influenza A Virus in Canada

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Youhua Chen

Synonymous codon usage patterns of neuraminidase (NA) gene of 64 subtypes (one is a mixed subtype) of influenza A virus found in Canada were analyzed. In total, 1422 NA sequences were analyzed. Among the subtypes, H1N1 is the prevailing one with 516 NCBI accession records, followed by H3N2, H3N8, and H4N6. The year of 2009 has the highest report records for the NA sequences in Canada, corresponding to the 2009 pandemic event. Correspondence analysis on the RSCU values of the four major subtypes showed that they had distinct clustering patterns in the two-dimensional scatter plot, indicating that different subtypes of IAV utilized different preferential codons. This subtype clustering pattern implied the important influence of natural selection, which could be further evidenced by an extremely flattened regression line in the neutrality plot (GC12 versus G3s plot) and a significant phylogenetic signal on the distribution of different subtypes in the clades of the phylogenetic tree (λ statistic). In conclusion, different subtypes of IAV showed an evolutionary differentiation on choosing different optimal codons. Natural selection played a deterministic role to structure IAV codon usage patterns in Canada.

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 991
Author(s):  
Huiguang Wu ◽  
Zhengyu Bao ◽  
Chunxiao Mou ◽  
Zhenhai Chen ◽  
Jingwen Zhao

Porcine astrovirus (PAstV), associated with mild diarrhea and neurological disease, is transmitted in pig farms worldwide. The purpose of this study is to elucidate the main factors affecting codon usage to PAstVs. Phylogenetic analysis showed that the subtype PAstV-5 sat at the bottom of phylogenetic tree, followed by PAstV-3, PAstV-1, PAstV-2, and PAstV-4, indicating that the five existing subtypes (PAstV1-PAstV5) may be formed by multiple differentiations of PAstV ancestors. A codon usage bias was found in the PAstVs-2,3,4,5 from the analyses of effective number of codons (ENC) and relative synonymous codon usage (RSCU). Nucleotides A/U are more frequently used than nucleotides C/G in the genome CDSs of the PAstVs-3,4,5. Codon usage patterns of PAstV-5 are dominated by mutation pressure and natural selection, while natural selection is the main evolutionary force that affects the codon usage pattern of PAstVs-2,3,4. The analyses of codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) showed the codon usage similarities between the PAstV and animals might contribute to the broad host range and the cross-species transmission of astrovirus. Our results provide insight into understanding the PAstV evolution and codon usage patterns.


2007 ◽  
Vol 53 (7) ◽  
pp. 830-839 ◽  
Author(s):  
Insung Ahn ◽  
Hyeon S. Son

To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL®database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.


1995 ◽  
Vol 349 (1329) ◽  
pp. 241-247 ◽  

Silent sites (positions that can undergo synonymous substitutions) in protein-coding genes can illuminate two evolutionary processes. First, despite being silent, they may be subject to natural selection. Among eukaryotes this is exemplified by yeast, where synonymous codon usage patterns are shaped by selection for particular codons that are more efficiently and/or accurately translated by the most abundant tRNAs; codon usage across the genome, and the abundance of different tRNA species, are highly co-adapted. Second, in the absence of selection, silent sites reveal underlying mutational patterns. Codon usage varies enormously among human genes, and yet silent sites do not appear to be influenced by natural selection, suggesting that mutation patterns vary among regions of the genome. At first, the yeast and human genomes were thought to reflect a dichotomy between unicellular and multicellular organisms. However, it now appears that natural selection shapes codon usage in some multicellular species (e.g. Drosophila and Caenorhabditis ), and that regional variations in mutation biases occur in yeast. Silent sites (in serine codons) also provide evidence for mutational events changing adjacent nucleotides simultaneously.


2011 ◽  
Vol 57 (12) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xue Lian Luo ◽  
Jian Guo Xu ◽  
Chang Yun Ye

In this study, we analysed synonymous codon usage in Shigella flexneri 2a strain 301 (Sf301) and performed a comparative analysis of synonymous codon usage patterns in Sf301 and other strains of Shigella and Escherichia coli . Although there was a significant variety in codon usage bias among different Sf301 genes, there was a slight but observable codon usage bias that could primarily be attributable to mutational pressure and translational selection. In addition, the relative abundance of dinucleotides in Sf301 was observed to be independent of the overall base composition but was still caused by differential mutational pressure; this also shaped codon usage. By comparing the relative synonymous codon usage values across different Shigella and E. coli strains, we suggested that the synonymous codon usage pattern in the Shigella genomes was strain specific. This study represents a comprehensive analysis of Shigella codon usage patterns and provides a basic understanding of the mechanisms underlying codon usage bias.


2021 ◽  
Author(s):  
Alexander L Cope ◽  
Premal Shah

Patterns of non-uniform usage of synonymous codons (codon bias) varies across genes in an organism and across species from all domains of life. The bias in codon usage is due to a combination of both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most population genetics models quantify the effects of mutation bias and selection on shaping codon usage patterns assuming a uniform mutation bias across the genome. However, mutation biases can vary both along and across chromosomes due to processes such as biased gene conversion, potentially obfuscating signals of translational selection. Moreover, estimates of variation in genomic mutation biases are often lacking for non-model organisms. Here, we combine an unsupervised learning method with a population genetics model of synonymous codon bias evolution to assess the impact of intragenomic variation in mutation bias on the strength and direction of natural selection on synonymous codon usage across 49 Saccharomycotina budding yeasts. We find that in the absence of a priori information, unsupervised learning approaches can be used to identify regions evolving under different mutation biases. We find that the impact of intragenomic variation in mutation bias varies widely, even among closely-related species. We show that the overall strength and direction of selection on codon usage can be underestimated by failing to account for intragenomic variation in mutation biases. Interestingly, genes falling into clusters identified by machine learning are also often physically clustered across chromosomes, consistent with processes such as biased gene conversion. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable mutation biases on codon frequencies.


2021 ◽  
Author(s):  
Yanan Fu ◽  
Yanping Huang ◽  
Jingjing Rao ◽  
Feng Zeng ◽  
Ruiping Yang ◽  
...  

Abstract The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, spread across hosts from humans to animals, transmitting particularly effectively in mink. How SARS-CoV-2 selects and evolves in the host, and the differences in the evolution of different animals are still unclear. To analysis the mutation and codon usage bias of SARS-CoV-2 in infected humans and animals. The SARS-CoV-2 sequence in mink (Mink-SARS2) and binding energy with receptor were calculated compared with human. The relative synonymous codon usage of viral encoded gene was analyzed to characterize the differences and the evolutionary characteristics. A synonymous codon usage analysis showed that SARS-CoV-2 is optimized to adapt in the animals in which it is currently reported, and all of the animals showed decreased adaptability relative to that of humans, except for mink. The neutrality plot showed that the effect of natural selection on different SARS-CoV-2 sequences is stronger than mutation pressure. A binding affinity analysis indicated that the spike protein of the SARS-CoV-2 variant in mink showed a greater preference for binding with the mink receptor ACE2 than with the human receptor, especially as the mutation Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity for mink receptor. In summary, mutations Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity with mink receptor, indicating possible natural selection and current host adaptation. Monitoring the variation and codon bias of SARS-CoV-2 provides a theoretical basis for tracing the epidemic, evolution and cross-species spread of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document