disulfide bond isomerase
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Navone ◽  
Thomas Vogl ◽  
Pawarisa Luangthongkam ◽  
Jo-Anne Blinco ◽  
Carlos H. Luna-Flores ◽  
...  

Abstract Background Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability often reduces activity at gut temperatures and there remains a demand for improved phyases for a growing market. Results In this work, we present a thermostable variant of the E. coli AppA phytase, ApV1, that contains an extra non-consecutive disulfide bond. Detailed biochemical characterisation of ApV1 showed similar activity to the wild type, with no statistical differences in kcat and KM for phytic acid or in the pH and temperature activity optima. Yet, it retained approximately 50% activity after incubations for 20 min at 65, 75 and 85 °C compared to almost full inactivation of the wild-type enzyme. Production of ApV1 in Pichia pastoris (Komagataella phaffi) was much lower than the wild-type enzyme due to the presence of the extra non-consecutive disulfide bond. Production bottlenecks were explored using bidirectional promoters for co-expression of folding chaperones. Co-expression of protein disulfide bond isomerase (Pdi) increased production of ApV1 by ~ 12-fold compared to expression without this folding catalyst and restored yields to similar levels seen with the wild-type enzyme. Conclusions Overall, the results show that protein engineering for enhanced enzymatic properties like thermostability may result in folding complexity and decreased production in microbial systems. Hence parallel development of improved production strains is imperative to achieve the desirable levels of recombinant protein for industrial processes.


2020 ◽  
Vol 8 (12) ◽  
pp. 1942
Author(s):  
Hye-Ji Choi ◽  
Dae-Eun Cheong ◽  
Su-Kyoung Yoo ◽  
Jaehong Park ◽  
Dong-Hyun Lee ◽  
...  

Human fibroblast growth factor 19 (hFGF19) is a difficult-to-express protein that is frequently fused with another protein for soluble expression. However, residual amino acids after cleavage with protease represent one of the major problems in therapeutic protein development. Here, we introduced synonymous codon substitutions in the N-terminal region encoding sequence of hFGF19 and co-expressed disulfide bond isomerase (ΔssDsbC) to functionally express hFGF19 without any fusion protein. Synonymous codon substitution significantly increased hFGF19 expression. Subsequent co-expression of ΔssDsbC with a selected variant of hFGF19 (scvhFGF19) further increased the proportion of soluble hFGF19 expression in Escherichia coli XL1-Blue. Both total and soluble scvhFGF19 expression increased remarkably in the alternative host, E. coli Origami 2 with mutated thioredoxin reductase and glutathione reductase. scvhFGF19 purification by anion exchange and heparin affinity chromatography resulted in a yield of 6.5 mg/L under normal induction conditions in flask culture. As such, a high cell density culture is expected to achieve an even higher yield. The biological activities of purified scvhFGF19 were assessed based on its ability to activate ERK1/2 signaling pathway in HepG2 hepatocarcinoma cells. In conclusion, the strategy described here may represent an efficient alternative process for the production of hFGF19 and/or related proteins.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195358 ◽  
Author(s):  
Magdalena Joanna Grzeszczuk ◽  
Aleksandra Bąk ◽  
Anna Marta Banaś ◽  
Paweł Urbanowicz ◽  
Stanislaw Dunin-Horkawicz ◽  
...  

2015 ◽  
Vol 23 (12) ◽  
pp. 945-957 ◽  
Author(s):  
Claire Chatelle ◽  
Stéphanie Kraemer ◽  
Guoping Ren ◽  
Hannah Chmura ◽  
Nils Marechal ◽  
...  

2014 ◽  
Vol 94 (4) ◽  
pp. 926-944 ◽  
Author(s):  
Guoping Ren ◽  
Matthew M. Champion ◽  
Jason F. Huntley

2008 ◽  
Vol 278 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Yunho Lee ◽  
Younghoon Kim ◽  
Sujin Yeom ◽  
Saehun Kim ◽  
Sungsu Park ◽  
...  

2006 ◽  
Vol 74 (9) ◽  
pp. 5140-5151 ◽  
Author(s):  
Eva Bjur ◽  
Sofia Eriksson-Ygberg ◽  
Fredrik Åslund ◽  
Mikael Rhen

ABSTRACT The effect of the cytoplasmic reductase and protein chaperone thioredoxin 1 on the virulence of Salmonella enterica serovar Typhimurium was evaluated by deleting the trxA, trxB, or trxC gene of the cellular thioredoxin system, the grxA or gshA gene of the glutathione/glutaredoxin system, or the dsbC gene coding for a thioredoxin-dependent periplasmic disulfide bond isomerase. Mutants were tested for tolerance to oxidative and nitric oxide donor substances in vitro, for invasion and intracellular replication in cultured epithelial and macrophage-like cells, and for virulence in BALB/c mice. In these experiments only the gshA mutant, which was defective in glutathione synthesis, exhibited sensitization to oxidative stress in vitro and a small decrease in virulence. In contrast, the trxA mutant did not exhibit any growth defects or decreased tolerance to oxidative or nitric oxide stress in vitro, yet there were pronounced decreases in intracellular replication and mouse virulence. Complementation analyses using defined catalytic variants of thioredoxin 1 showed that there is a direct correlation between the redox potential of thioredoxin 1 and restoration of intracellular replication of the trxA mutant. Attenuation of mouse virulence that was caused by a deficiency in thioredoxin 1 was restored by expression of wild-type thioredoxin 1 in trans but not by expression of a catalytically inactive variant. These results clearly imply that in S. enterica serovar Typhimurium, the redox-active protein thioredoxin 1 promotes virulence, whereas in vitro tolerance to oxidative stress depends on production of glutathione.


Sign in / Sign up

Export Citation Format

Share Document