nanolipid carriers
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 27 ◽  
Author(s):  
Sana Kalave ◽  
Bappaditya Chatterjee ◽  
Parth Shah ◽  
Ambikanandan Misra

: Skin being the largest external organ, offers an enticing procedure for transdermal drug delivery, so the drug needs to rise above the outermost layer of the skin, i.e., stratum corneum. Small molecular drug entities obeying the Lipinski rule, i.e., drugs having a molecular weight less than 500Da, high lipophilicity, and optimum polarity, are favored enough to be used on the skin as therapeutics. Skin's barrier action properties prevent the transport of macromolecules at pre-determined therapeutic rates. Notable advancement in macromolecules' transdermal delivery occurred in recent years. Scientists have opted for liposomes, the use of electroporation or, low-frequency ultrasound techniques. Some of these have shown better delivery of macromolecules at clinically beneficial rates. These physical technologies involve complex mechanisms, which may irreversibly incur skin damage. Majorly, two types of lipid-based formulations, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) are widely investigated as a transdermal delivery system. In this review, the concepts, mechanisms, and applications of Nanostructured Lipid Carriers that are considered feasible for transporting macromolecules via transdermal delivery system are thoroughly reviewed and presented along with their clinical perspective.


2020 ◽  
Vol 43 (6) ◽  
pp. 1105-1118 ◽  
Author(s):  
Lívia Viana de Castro Reis ◽  
Karina Magna Macena Leão ◽  
Ana Paula Badan Ribeiro ◽  
Marcelo Bispo de Jesus ◽  
Gabriela Alves Macedo ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Neeraj Mishra ◽  
Sawarni Sharma ◽  
Rahul Deshmukh ◽  
Anoop Kumar ◽  
Ruchika Sharma

Introduction: Parkinson’s Disease (PD) is one of the most common age-related neurodegenerative disorders which is marked with the loss of dopaminergic neurons. The present study performed on the nose to brain delivery of selegiline hydrochloride loaded nano lipid carrier, suggests that the nasal route is a good mean of targeting the drug directly into the brain. Methods and Materials: Nanostructured lipid carriers were prepared by using hot homogenization. Selegiline hydrochloride loaded NLCs and rotenone treatment were given at a dose of 10 mg/kg administered from 14th day to 28th day. Behavioral parameters were determined at 7th, 14th, 21st and 28th day. On the 28th day, animals were sacrificed for biochemical estimation. Results: The optimized drug loaded NLC formulation has shown 93±5.25% entrapment efficiency and 51.96% loading capacity. Optimized NLCs formulation has shown 70% release within 10 hours and after that, the release of the drug is sustained up to 22 hours (97%). Pharmacological action of the drug was found to restore the behavioral parameters in rotenone-induced rats. Conclusion: Nano Lipid Carrier (NLCs) therapeutics has emerged as a prominent method for the treatment of Parkinson’s Disease (PD) as it offers targeted delivery and enhances the therapeutic efficacy of neurotherapeutics. It is concluded from the studies that, Selegiline HCl loaded nano lipid carrier which was administered through nasal route has the potential to be used in the management therapy of Parkinson’s disease.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 83-85
Author(s):  
A Ambavkar ◽  
◽  
N. Desai

The objective of the study was to develop and evaluate nanolipid carriers based in situ gel of Carbamazepine, for brain delivery through intranasal route. The non – invasive nasal route can provide rapid delivery of drugs directly to the central nervous system by bypassing the blood brain barrier. The nanolipid carriers of carbamazepine as in situ nasal gel can prolong the drug release for control of repetitive seizures and were prepared by Phase Inversion Temperature technique. The retention of the carriers in the nasal cavity was improved by using Poloxamer 407 as thermoresponsive and Carbopol 974P as mucoadhesive gelling polymers, respectively. The developed gel was evaluated for particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, mucoadhesive and thermoresponsive behaviour, in vitro drug release, ex vivo permeation and nasociliotoxicity. The gel showed sustained release over prolonged periods and was found to be non-toxic to the sheep nasal mucosa.


2016 ◽  
Vol 35 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Soniya A. Jain ◽  
Madhavi Awale ◽  
Sulabha Pathak ◽  
Geeta Vanage ◽  
Vandana B. Patravale ◽  
...  

Currently, artemisinin-based combination therapy is considered the best option in the treatment of malaria. However, toxicity of artemisinins limits their use in pregnancy. In the absence of sufficient toxicity data, the World Health Organization recommends that artemisinins are not to be used in the first trimester of pregnancy and can be used only in second and third trimesters, when other treatments are not available. We have recently observed that drugs loaded in nanolipid carriers are selectively taken up in Plasmodium-infected erythrocytes with a concomitant reduction in the dose required to cure animals. Thus, 20% of the therapeutic dose of artemether–clindamycin (ARM-CP) loaded in nanostructured lipid carriers (NLCs; mean particle size 55 ± 10 nm) resulted in complete parasite clearance and 100% survival of infected mice. Here, we investigate the teratogenicity of this formulation in rodents (dosing on alternate days from 6th day to 18th day of gestation; 12-15 animals/group). The teratogenicity of drug-free NLCs and artesunate–clindamycin (ARS-CP) solution was also evaluated. We found that the therapeutic dose of ARS-CP caused fetal resorptions (87.5% resorptions in 8 litters), suggesting its unsuitability for use in pregnancy. Artesunate–clindamycin NLCs at therapeutic doses also resulted in ∼90% fetal resorptions in 10 litters examined. However, postimplantation losses or fetal malformations were not observed at the dose of ARM-CP NLCs that was required for complete parasite clearance in preclinical trials (ie, 20% of the therapeutic dose). Our data suggest that the NLCs loaded with 20% of the therapeutic dose of ARM-CP may have potential in treating malaria during pregnancy.


2016 ◽  
Vol 45 (3) ◽  
pp. 409-413 ◽  
Author(s):  
Nancy Sharma ◽  
Saurav Bhandari ◽  
Rahul Deshmukh ◽  
Awesh K Yadav ◽  
Neeraj Mishra

Sign in / Sign up

Export Citation Format

Share Document