transdermal delivery system
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Md. Rafiqul Islam ◽  
Shihab Uddin ◽  
Md. Raihan Chowdhury ◽  
Rie Wakabayashi ◽  
Muhammad Moniruzzaman ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Sana Kalave ◽  
Bappaditya Chatterjee ◽  
Parth Shah ◽  
Ambikanandan Misra

: Skin being the largest external organ, offers an enticing procedure for transdermal drug delivery, so the drug needs to rise above the outermost layer of the skin, i.e., stratum corneum. Small molecular drug entities obeying the Lipinski rule, i.e., drugs having a molecular weight less than 500Da, high lipophilicity, and optimum polarity, are favored enough to be used on the skin as therapeutics. Skin's barrier action properties prevent the transport of macromolecules at pre-determined therapeutic rates. Notable advancement in macromolecules' transdermal delivery occurred in recent years. Scientists have opted for liposomes, the use of electroporation or, low-frequency ultrasound techniques. Some of these have shown better delivery of macromolecules at clinically beneficial rates. These physical technologies involve complex mechanisms, which may irreversibly incur skin damage. Majorly, two types of lipid-based formulations, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) are widely investigated as a transdermal delivery system. In this review, the concepts, mechanisms, and applications of Nanostructured Lipid Carriers that are considered feasible for transporting macromolecules via transdermal delivery system are thoroughly reviewed and presented along with their clinical perspective.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Padmanabha Rao Amarachinta ◽  
Garima Sharma ◽  
Noufel Samed ◽  
Ananda Kumar Chettupalli ◽  
Madhusudhan Alle ◽  
...  

Abstract Background Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. Results The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of − 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. Conclusions Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.


2021 ◽  
Vol 12 (2) ◽  
pp. 1-4
Author(s):  
Syeda Jabeen Unnisa ◽  
Swarupa Arvapalli ◽  
B Karunakar ◽  
PS Rishika Reddy ◽  
A Vaishnavi ◽  
...  

Transdermal administration of drug is generally limited by the barrier function of the skin vascular system are one of the most controversial method for transdermal delivery of active substance. transdermal drug delivery system is designed to deliver biological active agents through the skin, principally by diffusion for local internal if not systemic effects. The transdermal delivery system was relaunched after the discovery of elastic vesicles like transfersome, ethosome, cubosome, phytosome etc. Transfersomes are a form of elastic or deformable vesicle, which were introduced in the early 1990s. Elasticity is generated by incorporation of edge activator in lipid bilayer structure. Drug absorbed and distributed into organs and tissue and eliminated from the body it must pass through one or more biological membranes at various locations such movement of drug across the membrane is called as drug transport for the drug delivery to cross the body it should pass through the membrane barrier. This concept of drug delivery system was designed in attempt to concentrate the amount of drug in the remaining drug; therefore, the phospholipid-based carrier system is of considerable interest in the era.


2021 ◽  
Vol 9 (2) ◽  
pp. 185-185
Author(s):  
Stefano Mastrangelo ◽  
Michele Antonio Capozza ◽  
Silvia Triarico ◽  
Giorgio Attinà ◽  
Palma Maurizi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document