scholarly journals A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1719 ◽  
Author(s):  
Muniyandi Jeyaraj ◽  
Sangiliyandi Gurunathan ◽  
Muhammad Qasim ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Paulo Michel Pinheiro Ferreira ◽  
Renata Rosado Drumond ◽  
Jurandy do Nascimento Silva ◽  
Ian Jhemes Oliveira Sousa ◽  
Marcus Vinicius Oliveira Barros de Alencar ◽  
...  

Mimosa caesalpiniifolia (Fabaceae) is used by Brazilian people to treat hypertension, bronchitis, and skin infections. Herein, we evaluated the antiproliferative action of the dichloromethane fraction from M. caesalpiniifolia (DFMC) stem bark on murine tumor cells and the in vivo toxicogenetic profile. Initially, the cytotoxic activity of DFMC on primary cultures of Sarcoma 180 (S180) cells by Alamar Blue, trypan, and cytokinesis block micronucleus (CBMN) assays was assessed after 72 h of exposure, followed by the treatment of S180-bearing Swiss mice for 7 days, physiological investigations, and DNA/chromosomal damage. DFMC and betulinic acid revealed similar in vitro antiproliferative action on S180 cells and induced a reduction in viable cells, induced a reduction in viable cells and caused the emergence of bridges, buds, and morphological features of apoptosis and necrosis. S180-transplanted mice treated with DFMC (50 and 100 mg/kg/day), a betulinic acid-rich dichloromethane, showed for the first time in vivo tumor growth reduction (64.8 and 80.0%) and poorer peri- and intratumor quantities of vessels. Such antiproliferative action was associated with detectible side effects (loss of weight, reduction of spleen, lymphocytopenia, and neutrophilia and increasing of GOT and micronucleus in bone marrow), but preclinical general anticancer properties of the DFMC were not threatened by toxicological effects, and these biomedical discoveries validate the ethnopharmacological reputation of Mimosa species as emerging phytotherapy sources of lead molecules.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 727
Author(s):  
Damiano Cirri ◽  
Ida Landini ◽  
Lara Massai ◽  
Enrico Mini ◽  
Francesca Maestrelli ◽  
...  

Auranofin (AF) and its iodido analog, i.e., Au(PEt3) I (AFI), were reported to exhibit very promising anticancer properties both in vitro and in vivo. However, both these gold compounds have a scarce aqueous solubility that hampers their pharmaceutical use. Here, we explore whether encapsulation of these metallodrugs inside hydroxypropyl-beta–cyclodextrin (HPβ–CD) may lead to an improved biopharmaceutical profile for the resulting adducts. Phase solubility studies, performed at 25 °C in an aqueous buffer, revealed, in both cases, the formation of a 1:1 drug to cyclodextrin complex; a far greater apparent stability constant (K1:1) was measured for AFI compared to AF (331 M−1 versus ca. 30 M−1). NMR studies conducted on the AFI/HPβ–CD system confirmed the formation of a stable 1:1 adduct. Then, binary systems of AF and AFI with HPβ–CD were prepared by colyophilization and characterized by DSC and PXRD. The results revealed the occurrence of drug complexation and/or amorphization for the AFI/HPβ–CD binary system. Afterwards, the antiproliferative properties of the two cyclodextrin adducts and of the corresponding free drugs were comparatively evaluated in vitro in three representative ovarian cancer cell lines, i.e., A2780, SKOV3, and IGROV-1. The results, in all cases, point out that CD complexation of the two gold drugs does not substantially affect their biological activity. The implications of these findings are discussed in the frame of the current knowledge of AF and its analogs.


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
Lachlan A. Bourke ◽  
Christina N. Zdenek ◽  
Edgar Neri-Castro ◽  
Melisa Bénard-Valle ◽  
Alejandro Alagón ◽  
...  

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species’ geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


Sign in / Sign up

Export Citation Format

Share Document