scholarly journals Mechanical and Structural Characterization of Pineapple Leaf Fiber

Fibers ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 51
Author(s):  
Eric Worlawoe Gaba ◽  
Bernard O. Asimeng ◽  
Elsie Effah Kaufmann ◽  
Solomon Kingsley Katu ◽  
E. Johan Foster ◽  
...  

Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
K. Z. M. Abdul Motaleb ◽  
Md Shariful Islam ◽  
Mohammad B. Hoque

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) composites were prepared by compression molding. The fiber content varied from 25% to 45% by weight. Water uptake percentages of the composites containing various wt% of fiber were measured. All the composites demonstrated lower water uptake percentages and maximum of 1.93% for 45 wt% PALF/PP composite treated with 7(w/v)% NaOH. Tensile Strength (TS), Tensile Modulus (TM), Elongation at Break (Eb %), Bending Strength (BS), Bending Modulus (BM), and Impact Strength (IS) were evaluated for various fiber content. The 45 wt% PALF/PP composite exhibited an increase of 210% TS, 412% TM, 155% BS, 265% BM, and 140% IS compared to PP matrix. Moreover, with the increasing of fiber content, all the mechanical properties increase significantly; for example, 45 wt% fiber loading exhibited the best mechanical property. Fibers were also treated with different concentration of NaOH and the effects of alkali concentrations were observed. The composite treated with 7 (w/v)% NaOH exhibited an increase of 25.35% TS, 43.45% TM, 15.78% BS, and 52% BM but 23.11% decrease of IS compared to untreated composite. Alkali treatment improved the adhesive characteristics of fiber surface by removing natural impurities, hence improving the mechanical properties. However, over 7% NaOH concentration of the tensile strength of the composite reduced slightly due to overexposure of fibers to NaOH.


2020 ◽  
Author(s):  
Sahar. Mokhtari ◽  
Anthony.W. Wren

AbstractThis study addresses issues with currently used bone adhesives, by producing novel glass based skeletal adhesives through modification of the base glass composition to include copper (Cu) and by characterizing each glass with respect to structural changes. Bioactive glasses have found applications in fields such as orthopedics and dentistry, where they have been utilized for the restoration of bone and teeth. The present work outlines the formation of flexible organic-inorganic polyacrylic acid (PAA) – glass hybrids, commercial forms are known as glass ionomer cements (GICs). Initial stages of this research will involve characterization of the Cu-glasses, significant to evaluate the properties of the resulting adhesives. Scanning electron microscopy (SEM) of annealed Cu glasses indicates the presence of partial crystallization in the glass. The structural analysis of the glass using Raman suggests the formation of CuO nanocrystals on the surface. X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS) further confirmed the formation of crystalline CuO phases on the surface of the annealed Cu-glass. The setting reaction was studied using Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the Cu containing adhesives exhibited gel viscoelastic behavior and enhanced mechanical properties when compared to the control composition. Compression data indicated the Cu glass adhesives were efficient at energy dissipation due to the reversible interactions between CuO nano particles and PAA polymer chains.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


2011 ◽  
Vol 236-238 ◽  
pp. 83-86 ◽  
Author(s):  
Xian Hui Sun

The collagen was blended with polyvinyl alcohol (PVA) with the maximum maintenance of the natural structure as precondition. The apparent viscosity and rheology property of PVA-collagen blended solution were studied. the mechanical properties of the blend membrane formed from PVA-collagen blended solution were also determined. The PVA-collagen blended solution was wet spinned with the sodium sulfate as coagulant to prepare PVA-collagen composite fibers. SEM analysis and X-ray diffraction analysis of the PVA-collagen composite fibers were studied. The results indicated that, blended with PVA, the spinning property and mechanical properties of collagen were improved. The figure of the aim fiber transect structure was similar as the kidney, and it had a uniform size. The crystallization degree of the fiber was 55.7%, and it was increased with the increase of the hot extending temperature and the extending ratio.


2014 ◽  
Vol 484-485 ◽  
pp. 70-74
Author(s):  
Yu Ling Zhao ◽  
Zhuo Zhang

This paper analyzes several existing pineapple leaf fiber degumming methods and their advantages and disadvantages and describes its relationship with the degumming from the structure characteristics and chemical properties of pineapple leaf fiber. The author puts forward the pineapple leaf fiber degumming technology should be to "high-quality, efficient, low consumption, low pollution" direction of development, and put forward a new method of degumming. By means of scanning electron microscope, infrared spectroscopy, mechanical properties, thermal gravimetric analysis, differential scanning calorimetry and other means, to study the structure, mechanical properties and thermal properties of pineapple leaf fiber biochemical degumming treatment. The results show that: biochemical degumming can take off the original fiber, fiber surface glue residue, single fiber are glial exist, but the fiber separation in good condition, the fiber surface is smooth; hemicellulose degradation in biochemical degumming process, but did not completely removed; no effect on biochemical degumming of pineapple leaf fiber structure has good effect, degumming the treated fiber; degumming relative strength; fiber still has relatively high heat resistance.


2006 ◽  
Vol 45 ◽  
pp. 1429-1434
Author(s):  
Leila Figueiredo de Miranda ◽  
Antônio Hortêncio Munhoz Jr. ◽  
Terezinha Jocelen Masson ◽  
Virgínia Carolina Naime ◽  
Gustavo Camargo Costa

The properties of composites based on thermosetting polyester and barite for use in the radiological protection area have been investigated with the objective to study the effect of different variables in the attainment of composites. To verify the efficiency of the composites produced in relation to radiological protection, lead was adopted as reference. A factorial experimental design was carried out and the studied variables were: type of polyester resin (orthophthalic or isophthalic), coupling agent (titanate or organosilane) and the ratio of resin to accelerator, catalyst and barite. The variables analyzed were: efficiency for barring the X-radiation, apparent density and mechanical properties. The effect, obtained from the experimental design, due to ratio of resin to barite in the apparent density was 0.036. The average apparent density of the samples produced with barite/resin value equal 2.0 (weight ratio) was 2.16g/cm3, while the average density of the samples produced with the weight ratio of barite/resin equal 3.0 was 2.2g/cm3. It was observed same trend for the density to mechanical properties. It was observed that the samples attenuated X-ray radiation adequately up to 116 kV.


Biomaterials ◽  
2011 ◽  
Vol 32 (34) ◽  
pp. 8892-8904 ◽  
Author(s):  
Holly D. Barth ◽  
Elizabeth A. Zimmermann ◽  
Eric Schaible ◽  
Simon Y. Tang ◽  
Tamara Alliston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document