scholarly journals Morphology and wear of high chromium and austempered ductile iron balls as grinding media in ball mills

2021 ◽  
Vol 2070 (1) ◽  
pp. 012201
Author(s):  
BRN Murthy ◽  
Ravichandra Rangappa

Abstract High chromium balls are recognized as better grinding media in terms of wear rates than forged steel balls, which are conventional grinding media in the milling process of iron ore. In this research work, the wear rate of high chromium balls and austempered ductile iron (ADI) balls as crushing media in a ball mill are compared. ADI are prepared by austenitizing the spheroidal graphite (SG) iron balls at 920 °C for one hour, and step austempering heat treatments were given, which includes the first step austenitizing at 300 °C for 15 min, followed by a second step austenitizing at 400 °C for 60 min. The wear rates were estimated when both balls were used separately by maintaining the same machining conditions and when the balls are mixed. The grinding wear conduct of both materials is evaluated for wear loss in wet grinding conditions. The experimental results reveal that the performance of ADI balls is better than high chromium balls when tested separately and mixed. Results also indicate that the wear rates/revolutions will decrease when the operating period increases.

2018 ◽  
Vol 12 (4) ◽  
pp. 4180-4190
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Gowri Shankar M. C

When the ductile iron which is also known as Spheroidal Graphite (SG) iron, is subjected to austempering heat treatment, the material is known as austempered ductile iron (ADI). This material has good mechanical properties and has various applications in different fields. This revolutionary material with its excellent combination of strength, ductility, toughness and wear resistance has the potential to replace some of the commonly used conventional materials such as steel, aluminium and other light weight alloys as it offers production advantage as well. One of the problems encountered during manufacturing is machining of ADI parts owing to its high hardness and wear resistance. Many researchers over a period of time have reported the machinability aspects of the ADI. This paper presents a review on the developments made on the machinability aspects of ADI along with other mechanical properties.


2010 ◽  
Vol 97-101 ◽  
pp. 2036-2039 ◽  
Author(s):  
Ashwin Polishetty ◽  
Guy Littlefair

Austempered Ductile Iron (ADI) is a modified Spheroidal Graphite Iron (SGI) produced by applying a two-stage heat treatment cycle of austenitising and austempering. The microstructure of ADI also known as “ausferrite” consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often problematic due to the microstructural phase transformation from austenite to martensite. Machining trials consisted of drilling ADI-Grades900, 1050, 1200 and 1400 using inserted (TiAlN PVD coated) type drills. The cutting parameters selected were; cutting speeds [m/min] of 30 and 40; penetration rates [mm/rev] of 0.1 and 0.2; to a constant depth of 20mm. The machining characteristics of ADI are evaluated through surface texture analysis and microhardness analysis. These results indicate that microhardness is modified during machining and surface texture is improved using a cutting fluid.


2001 ◽  
Vol 41 (4) ◽  
pp. 372-380 ◽  
Author(s):  
P. J. J. Ratto ◽  
A. F. Ansaldi ◽  
V. E. Fierro ◽  
F. R. Agüera ◽  
H. N. Alvarez Villar ◽  
...  

Author(s):  
M. Ahmed ◽  
E. Riedel ◽  
M. Kovalko ◽  
A. Volochko ◽  
R. Bähr ◽  
...  

AbstractIn this research, ultrasonic melt treatment (UST) was used to produce a new ultrafine grade of spheroidal graphite cast iron (SG iron) and austempered ductile iron (ADI) alloys. Ultrasonic treatment was numerically simulated and evaluated based on acoustic wave streaming. The simulation results revealed that the streaming of the acoustic waves propagated as a stream jet in the molten SG iron along the centerline of the ultrasonic source (sonotrode) with a maximum speed of 0.7 m/s and gradually decreased to zero at the bottom of the mold. The metallographic analysis of the newly developed SG iron alloy showed an extremely ultrafine graphite structure. The graphite nodules’ diameter ranging between 6 and 9 µm with total nodule count ranging between 900 to more than 2000 nodules per mm2, this nodule count has never been mentioned in the literature for castings of the same diameter, i.e., 40 mm. In addition, fully ferritic matrix was observed in all UST SG irons. Further austempering heat treatments were performed to produce different austempered ductile iron (ADI) grades with different ausferrite morphologies. The dilatometry studies for the developed ADI alloys showed that the time required for the completion of the ausferrite formation in UST alloys was four times shorter than that required for statically solidified SG irons. SEM micrographs for the ADI alloys showed an extremely fine and short ausferrite structure together with small austenite blocks in the matrix. A dual-phase intercritically austempered ductile iron (IADI) alloy was also produced by applying partial austenitization heat treatment in the intercritical temperature range, where austenite + ferrite + graphite phases coexist. In dual-phase IADI alloy, it was established that introducing free ferrite in the matrix would provide additional refinement for the ausferrite.


Author(s):  
Jiří Votava ◽  
Michal Černý ◽  
J. Filípek

The objective of this article consists in exhaustive monitoring of abrasive wear and subsequent evaluation of nodular cast iron with spheroidal graphite used as the base material for production of ploughshare blades. Nodular cast iron has a lot of convenient properties for production of these components. We have tested this material in field tests. For these tests there were manufactured ploughshare blades (directly according to original). These ploughshare blades were tested in practical conditions of agricultural company Farma Nedvězí Ltd. Three ploughshare blades were used in natural cast state and the others were heat-treated. During the test there were measured decreases of weights of the ploughshare blades and subsequently compared with decreases of original ploughshare blades, produced by company Opall Agri which are ordinarily available at our market.


2011 ◽  
Author(s):  
H. Raghavendra ◽  
K. L. Bhat ◽  
K. Rajendra Udupa ◽  
M. M. Rajath Hegde ◽  
Francisco Chinesta ◽  
...  

2005 ◽  
Vol 47 (9) ◽  
pp. 523-528 ◽  
Author(s):  
Ahmet Sagin ◽  
Ahmet Topuz

Sign in / Sign up

Export Citation Format

Share Document