scholarly journals Exploiting Feature Selection and Neural Network Techniques for Identification of Focal and Nonfocal EEG Signals in TQWT Domain

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Muhammad Tariq Sadiq ◽  
Hesam Akbari ◽  
Ateeq Ur Rehman ◽  
Zuhaib Nishtar ◽  
Bilal Masood ◽  
...  

For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed I. Sharaf ◽  
Mohamed Abu El-Soud ◽  
Ibrahim M. El-Henawy

Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach to recognize and classify the epileptic seizure and seizure-free EEG signals automatically by an intelligent computer-aided method. Moreover, the prediction of the preictal phase of the epilepsy is proposed to assist the neurophysiologist in the clinic. The proposed method presents two perspectives for the EEG signal processing to detect and classify the seizures and seizure-free signals. The first perspectives consider the EEG signal as a nonlinear time series. A tunable Q-wavelet is applied to decompose the signal into smaller segments called subbands. Then a chaotic, statistical, and power spectrum features sets are extracted from each subband. The second perspectives process the EEG signal as an image; hence the gray-level co-occurrence matrix is determined from the image to obtain the textures of contrast, correlation, energy, and homogeneity. Due to a large number of features obtained, a feature selection algorithm based on firefly optimization was applied. The firefly optimization reduces the original set of features and generates a reduced compact set. A random forest classifier is trained for the classification and prediction of the seizures and seizure-free signals. Afterward, a dataset from the University of Bonn, Germany, is used for benchmarking and evaluation. The proposed approach provided a significant result compared with other recent work regarding accuracy, recall, specificity, F-measure, and Matthew’s correlation coefficient.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Sachin Shrestha ◽  
Rupesh Dahi Shrestha ◽  
Bhojraj Thapa

Epilepsy is a neurological disorder of brain and the electroencephalogram (EEG) signals are commonly used to detect the epileptic seizures, the result of abnormal electrical activity in the brain. This paper focuses on the analysis of EEG signal to detect the presence of the epileptic seizure prior to its occurrence. The result could aid the individual in the initiation of delay sensitive diagnostic, therapeutic and alerting procedures. The methodology involves the multi resolution analysis (MRA) of the EEG signals of epileptic patient. MRA is carried out using discrete wavelet transform with daubechies 8 as the mother wavelet. For EEG data, the database of MIT-BIH of seven patients with different cases of epileptic seizure was used. The result with one of the patients showed presence of a unique pattern during the spectral analysis of the signal over different bands. Hence, based on the first patient, similar region is selected with the other patients and the multi-resolution analysis along with the principal component analysis (PCA) for the dimension reduction is carried out. Finally, these are treated with neural network to perform the classification of the signal either the epilepsy is occurring or not. The final results showed 100% accuracy with the detection with the neural network however it uses a large amount of data for analysis. Thus, the same was tested with dimension reduction using PCA which reduced the average accuracy to 89.51%. All the results have been simulated within the Matlab environment.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2019 ◽  
Vol 24 (6) ◽  
pp. 4575-4587 ◽  
Author(s):  
Akshata K. Naik ◽  
Venkatanareshbabu Kuppili ◽  
Damodar Reddy Edla

2007 ◽  
Vol 8 (4) ◽  
pp. 225-234 ◽  
Author(s):  
A. K. Sen ◽  
M. J. Kubek ◽  
H. E. Shannon

Using wavelet analysis we have detected the presence of chirps in seizure EEG signals recorded from kindled epileptic rats. Seizures were induced by electrical stimulation of the amygdala and the EEG signals recorded from the amygdala were analyzed using a continuous wavelet transform. A time–frequency representation of the wavelet power spectrum revealed that during seizure the EEG signal is characterized by a chirp-like waveform whose frequency changes with time from the onset of seizure to its completion. Similar chirp-like time–frequency profiles have been observed in newborn and adult patients undergoing epileptic seizures. The global wavelet spectrum depicting the variation of power with frequency showed two dominant frequencies with the largest amounts of power during seizure. Our results indicate that a kindling paradigm in rats can be used as an animal model of human temporal lobe epilepsy to detect seizures by identifying chirp-like time–frequency variations in the EEG signal.


2020 ◽  
Vol 9 (1) ◽  
pp. 2726-2733

Extensively used technique to diagnose the epilepsy is EEG. The research objective is to check the variations of frequency found in the epileptic EEG signals.. The EEG dataset were acquired from online database of the Bonn University (BU). Then, butterworth type two filter was implemented to remove the unwanted artifacts from the acquired EEG signals. Further, Multivariate Variational Mode Decomposition (MVMD) methodology was applied to decompose the denoised EEG signals. The signal decomposition helps in finding the necessary information, which required to model the complex time series data. Then, the features were extracted from decomposed signals by using fifteen entropy, linear and statistical features. In addition, ant colony optimization technique was proposed for optimizing the extracted features. The optimized feature vectors were classified by Deep Neural Network (DNN) that includes two circumstances (seizure and healthy), and (Interictal, ictal, and normal). The accuracy attained using the ant colony with deep neural network is 98.12% using the BU EEG dataset, respectively related to the existing models.


2014 ◽  
pp. 30-37
Author(s):  
Svetlana Bezobrazova ◽  
Vladimir Golovko

A goal of EEG signals analysis is not only human psychologically and functionality states definition but also pathological activity detection. In this paper we present an approach for epileptiform activity detection by artificial neural network technique for EEG signal segmentation and for the highest Lyapunov’s exponent computing. The EEG segmentation by the neural network approach makes it possible to detect an abnormal activity in signals. We examine our system for segmentation and anomaly detection on the EEG signals where the anomaly is an epileptiform activity.


Sign in / Sign up

Export Citation Format

Share Document