ionic energy
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 18 ◽  
pp. 100536
Author(s):  
M. Zahra ◽  
Rizwan Raza ◽  
A. Ali ◽  
N. Mushtaq ◽  
M.A. Ahmad ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 609
Author(s):  
Eanna Fennell ◽  
Juliane Kamphus ◽  
Jacques M. Huyghe

The Flory–Rehner theoretical description of the free energy in a hydrogel swelling model can be broken into two swelling components: the mixing energy and the ionic energy. Conventionally for ionized gels, the ionic energy is characterized as the main contributor to swelling and, therefore, the mixing energy is assumed negligible. However, this assumption is made at the equilibrium state and ignores the dynamics of gel swelling. Here, the influence of the mixing energy on swelling ionized gels is quantified through numerical simulations on sodium polyacrylate using a Mixed Hybrid Finite Element Method. For univalent and divalent solutions, at initial porosities greater than 0.90, the contribution of the mixing energy is negligible. However, at initial porosities less than 0.90, the total swelling pressure is significantly influenced by the mixing energy. Therefore, both ionic and mixing energies are required for the modeling of sodium polyacrylate ionized gel swelling. The numerical model results are in good agreement with the analytical solution as well as experimental swelling tests.


2019 ◽  
Vol 29 (3SI) ◽  
pp. 305
Author(s):  
Nguyen Thi Hai Yen ◽  
Le Duc Anh ◽  
Hoang Anh Tuan ◽  
Nguyen Toan Thang

The Mott - Hubbard metal - insulator transition in the half-filled mass imbalanced ionic Hubbard model is investigated using the two-site dynamical mean field theory. We find that for a fixed mass imbalanced parameter r the critical interaction Uc increases when the ionic energy \(\Delta\) is increased. In the other hand, for a fixed \(\Delta\), \(U_c\) decreases with increasing the mass imbalance. We also show the existence of BI phase in the system for the case \(\Delta \ne 0\), \(U=0\) and calculate the staggered charge density \(n_B − n_A\) as a function of the interaction for different values of the mass imbalance. Our results in the limiting cases (\(r = 1\); \(\Delta \ne 0\) or/and \(\Delta = 0\); \(r\ne 1\)) are in good agreement with those obtained from full dynamical mean field theory.


Author(s):  
Yonghe Zhang

Ionocovalency theory is defined “…everything exists in ionocovalency, the harmony of ionic energy with the covalent environment.” The authors have succeeded in thoroughly studying ionic energy part of the ionocovalent theory, and will now focus target on the covalent environment part of the theory. The essence of chemical reactions and chemical bonds is the overlap of atomic orbitals, the electron density or the ionocovalent potential. The covalent radius rc is the unique parameter that can be considered as an atomic property derived from molecules for data reduction and can be assigned to the atoms interacting in molecules. In the present study, A new application view of covalent radii of multidimensional world is revealed by the ionocovalency theory which can quantitatively describe the chemical phenomena and qualitatively correlates to the universal observations.


2014 ◽  
Vol 24 (3S2) ◽  
pp. 18-22
Author(s):  
Nguyen Danh Tung ◽  
Hoang Anh Tuan

We calculate the temperature dependent conductivity in the half-filled ionic Hubbard model with an on-site Coulomb repulsion $U$ and an ionic energy $\Delta$ by mean of the coherent potential approximation. It is shown that for intermediate and large \(\Delta\) the largest conductivity occurs near the special value \(U = 2 \Delta\) at all temperatures \(T\), for a fixed \(\Delta\) the region of finite conductivity \([U_{c1}, U_{c2}]\) expands and its maximum decreases with increasing \(T\). Our results are in good agreement with those derived from the determinant quantum Monte Carlo simulation.


2006 ◽  
pp. 421-430
Author(s):  
R. W. Roos ◽  
J. M. Huyghe ◽  
F. P. T. Baaijens

2000 ◽  
Vol 9 (6) ◽  
pp. 432-435 ◽  
Author(s):  
Lei An-le ◽  
Li Zhong ◽  
Ni Guo-quan ◽  
Xu Zhi-zhan

1999 ◽  
Vol 557 ◽  
Author(s):  
B. Yan ◽  
J. Yang ◽  
S. Guha ◽  
A. Gallagher

AbstractPositive ionic energy distributions in modified very-high-frequency (MVHF) and radio frequency (RF) glow discharges were measured using a retarding field analyzer. The ionic energy distribution for H2 plasma with 75 MHz excitation at a pressure of 0.1 torr has a peak at 22 eV with a half-width of about 6 eV. However, with 13.56 MHz excitation, the peak appears at 37 eV with a much broader half-width of 18 eV. The introduction of SiH4 to the plasma shifts the distribution to lower energy. Increasing the pressure not only shifts the distribution to lower energy but also broadens the distribution. In addition, the ionic current intensity to the substrate is about five times higher for MVHF plasma than for RF plasma. In order to study the effect of ion bombardment, the deposition of a-Si alloy solar cells using MVHF was investigated in detail at different pressures and external biases. Lowering the pressure and negatively biasing the substrate increases ion bombardment energy and results in a deterioration of cell performance. It indicates that ion bombardment is not beneficial for making solar cells using MVHF. By optimizing the deposition conditions, a 10.8% initial efficiency of a-Si/a-SiGe/SiGe triple-junction solar cell was achieved at a deposition rate of 0.6 nm/sec.


Sign in / Sign up

Export Citation Format

Share Document