Analysis of Plasma Properties and Deposition of Amorphous Silicon Alloy Solar Cells Using Very High Frequency Glow Discharge

1999 ◽  
Vol 557 ◽  
Author(s):  
B. Yan ◽  
J. Yang ◽  
S. Guha ◽  
A. Gallagher

AbstractPositive ionic energy distributions in modified very-high-frequency (MVHF) and radio frequency (RF) glow discharges were measured using a retarding field analyzer. The ionic energy distribution for H2 plasma with 75 MHz excitation at a pressure of 0.1 torr has a peak at 22 eV with a half-width of about 6 eV. However, with 13.56 MHz excitation, the peak appears at 37 eV with a much broader half-width of 18 eV. The introduction of SiH4 to the plasma shifts the distribution to lower energy. Increasing the pressure not only shifts the distribution to lower energy but also broadens the distribution. In addition, the ionic current intensity to the substrate is about five times higher for MVHF plasma than for RF plasma. In order to study the effect of ion bombardment, the deposition of a-Si alloy solar cells using MVHF was investigated in detail at different pressures and external biases. Lowering the pressure and negatively biasing the substrate increases ion bombardment energy and results in a deterioration of cell performance. It indicates that ion bombardment is not beneficial for making solar cells using MVHF. By optimizing the deposition conditions, a 10.8% initial efficiency of a-Si/a-SiGe/SiGe triple-junction solar cell was achieved at a deposition rate of 0.6 nm/sec.

1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
X. Deng ◽  
T. Liu ◽  
M. Izu

AbstractIn an effort to find an alternative deposition method to the standard low deposition rate 13.56 M-z PECVD technique, the feasibility of using a 70 MiHz rf plasma frequency to prepare a-Si:H based i-layer materials at high rates for nip based triple-junction solar cells has been tested. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for both a-Si:H and a-SiGe:H single-junction cells remain relatively constant as the i-layer deposition rate is varied from 1 to 10 Å/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 Å/s) using the standard 13.56 MHz PECVD technique and the same deposition equipment. Using the knowledge obtained in the fabrication of the single-junction devices, a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells have been fabricated with all of the i-layers prepared using the VHF technique and deposition rates near 10 Å/s. Thin doped layers for these devices were prepared using the standard 13.56 MIHz rf frequency and deposition rates near 1 Å/s. Pre-light soaked efficiencies of greater than 10% have been obtained for these cells prepared at the high rates. In addition, after 600 hrs. of light soaking under white light conditions, the cell efficiencies degraded by only 10-13%, values similar to the degree of degradation for high efficiency triple-junction cells made by the standard 13.56 MiHz method using i-layer deposition rates near 1 Å/s. Thus, use of this VHF method in the production of large area a-Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher module throughput and reduced module cost.


2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.


2009 ◽  
Vol 517 (17) ◽  
pp. 4758-4761 ◽  
Author(s):  
Jatindra K. Rath ◽  
Yanchao Liu ◽  
Monica Brinza ◽  
Arjan Verkerk ◽  
Caspar van Bommel ◽  
...  

1997 ◽  
Vol 15 (2) ◽  
pp. 298-306 ◽  
Author(s):  
A. I. Kosarev ◽  
A. S. Smirnov ◽  
A. S. Abramov ◽  
A. J. Vinogradov ◽  
A. Yu. Ustavschikov ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on high rate deposition of hydrogenated amorphous silicon (a-Si:H) and silicon germanium (a-SiGe:H) based n-i-p solar cells. The intrinsic a-Si:H and a-SiGe:H layers were deposited using modified very high frequency (MVHF) glow discharge. We found that both the initial cell performance and stability of the MVHF a-Si:H single-junction cells are independent of the deposition rate up to 15 Å/s. The average initial and stable active-area cell efficiencies of 10.0% and 8.5%, respectively, were obtained for the cells on textured Ag/ZnO coated stainless steel substrates. a-SiGe:H single-junction cells were also optimized at a rate of ~10 Å/s. The cell performance is similar to those made using conventional radio frequency technique at 3 Å/s. By combining the optimized component cells made at 10 Å/s, an a-Si:H/a-SiGe:H double-junction solar cell with an initial active-area efficiency of 11.7% was achieved.


2006 ◽  
Vol 45 (4B) ◽  
pp. 3587-3591 ◽  
Author(s):  
Hiroaki Kakiuchi ◽  
Hiromasa Ohmi ◽  
Yasuhito Kuwahara ◽  
Mitsuhiro Matsumoto ◽  
Yusuke Ebata ◽  
...  

1998 ◽  
Vol 507 ◽  
Author(s):  
S.J. Jones ◽  
X. Deng ◽  
T. Liu ◽  
M. Izu

ABSTRACTThe 70 MHz Plasma Enhance Chemical Vapor Deposition (PECVD) technique has been tested as a high deposition rate (10 A/s) process for the fabrication of a-Si:H and a-SiGe:H alloy ilayers for high efficiency nip solar cells. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for a-Si:H single-junction cells can be made to remain relatively constant as the i-layer deposition rate is varied from 1 to 10 Å/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 Å/s) using the standard 13.56 MHz PECVD technique. For the a-SiGe:H cells of the same i-layer thickness, use of the VHF technique leads to cells with higher currents and an ability to more easily current match triple-junction cells prepared at high deposition rates which should lead to higher multi-junction efficiencies. Thus, use of this VHF method in the production of large area a- Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher manufacturing throughput and reduced module cost.


Sign in / Sign up

Export Citation Format

Share Document