scholarly journals Quantum Spectral Curve for AdS3/CFT2: a proposal

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Bogdan Stefański ◽  
Alessandro Torrielli

Abstract We conjecture the Quantum Spectral Curve equations for string theory on AdS3× S3× T4 with RR charge and its CFT2 dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bethe Ansatz equations for the massive sector of the theory, including the exact dressing phases found in the literature. The structure of the QSC shares many similarities with the previously known AdS5 and AdS4 cases, but contains a critical new feature — the branch cuts are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be suitably generalised producing a self-consistent system of equations. While further tests are necessary, particularly outside the massive sector, the simplicity and self-consistency of our construction suggests the completeness of the QSC.

2007 ◽  
Vol 22 (13) ◽  
pp. 915-930 ◽  
Author(s):  
IAN SWANSON

Marginal β deformations of [Formula: see text] super-Yang–Mills theory are known to correspond to a certain class of deformations of the S5 background subspace of type IIB string theory in AdS5×S5. An analogous set of deformations of the AdS5 subspace is reviewed here. String energy spectra computed in the near-pp-wave limit of these backgrounds match predictions encoded by discrete, asymptotic Bethe equations, suggesting that the twisted string theory is classically integrable in this regime. These Bethe equations can be derived algorithmically by relying on the existence of Lax representations, and on the Riemann–Hilbert interpretation of the thermodynamic Bethe ansatz. This letter is a review of a seminar given at the Institute for Advanced Study, based on research completed in collaboration with McLoughlin.


2004 ◽  
Vol 1 (3) ◽  
pp. 69-77 ◽  
Author(s):  
Jasna Crnjanski ◽  
Dejan Gvozdic

The self-consistent no parabolic calculation of a V-groove-quantum-wire (VQWR) band structure is presented. A comparison with the parabolic flat-band model of VQWR shows that both, the self-consistency and the nonparabolicity shift sub band edges, in some cases even in the opposite directions. These shifts indicate that for an accurate description of inter sub band absorption, both effects have to be taken into the account.


2004 ◽  
Vol 13 (01) ◽  
pp. 225-233 ◽  
Author(s):  
J. BARTEL ◽  
K. BENCHEIKH ◽  
P. QUENTIN

We present self-consistent semi-classical local densities characterising the structure of rotating nuclei. A particular emphasis is put on those densities which are generated by the breaking of time-reversal symmetry through the cranking piece of the Routhian, namely the current density and the spin vector density. Our approach which is based on the Extended-Thomas-Fermi method goes beyond the Inglis cranking approach and contains naturally the Thouless-Valatin self-consistency terms expressing the response of the mean field to the time-odd part of the density matrix.


1990 ◽  
Vol 14 ◽  
pp. 252-255 ◽  
Author(s):  
D.A. Rothrock ◽  
D.R. Thomas

A method of determining the temporally varying “state” of the ice cover (the concentrations of three surface types: open water, first-year ice, and multi-year ice) is presented. The methodology is that of Kalman smoothing: a physical model and a measurement model are used to blend satellite passive microwave data and buoy data to give an optimal estimate of the ice state. The estimates are optimal only to the degree that model parameter values are known and assumptions about variances are met. Uncertainty about these values and assumptions, and lack of independent data with which to compare results,leaves self-consistency as the most important test of results. A four-year record (1979-82) of the estimated Arctic Ocean ice balance is presented and shown to be self-consistent. Results are discussed in terms of the Arctic multi-year ice balance, which may be an important factor in the interaction ofocean, sea ice and climate because of its relationship to the minimum summer ice extent. The estimated area of multi-year ice decreases each year, but the decrease is small and insignificant based on four years of results. Furthermore, the observed decrease may be due to instrument drift or changes in the multi-year ice signature.


2003 ◽  
Vol 18 (12) ◽  
pp. 2011-2022 ◽  
Author(s):  
N. G. Sanchez

A synthetic report of the advances in the study of classical and quantum string dynamics in curved backgrounds is provided, namely : the new feature of Multistring solutions; the mass spectrum of Strings in Curved backgrounds; The effect of a Cosmological Constant and of Spacial Curvature on Classical and Quantum Strings; Classical splitting of Fundamental Strings; The General String Evolution in constant Curvature Spacetimes; The Conformal Invariance Effects; Strings on plane fronted and gravitational shock waves, string falling on spacetime singularities and its spectrum. New Developments in String Gravity and String Cosmology are reported: String driven cosmology and its Predictions; The primordial gravitational wave background; Non-singular string cosmologies from Exact Conformal Field Theories; Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time; Hawking Radiation in String Theory and the String Phase of Black Holes; New Dual Relation between Quantum Field Theory regime and String regime and the "QFT/String Tango"; New Coherent String States and Minimal Uncertainty Principle in string theory.


Sign in / Sign up

Export Citation Format

Share Document