bethe equations
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pieter W. Claeys ◽  
Jonah Herzog-Arbeitman ◽  
Austen Lamacraft

We consider a unitary circuit where the underlying gates are chosen to be \check{R}Ř-matrices satisfying the Yang-Baxter equation and correlation functions can be expressed through a transfer matrix formalism. These transfer matrices are no longer Hermitian and differ from the ones guaranteeing local conservation laws, but remain mutually commuting at different values of the spectral parameter defining the circuit. Exact eigenstates can still be constructed as a Bethe ansatz, but while these transfer matrices are diagonalizable in the inhomogeneous case, the homogeneous limit corresponds to an exceptional point where multiple eigenstates coalesce and Jordan blocks appear. Remarkably, the complete set of (generalized) eigenstates is only obtained when taking into account a combinatorial number of nontrivial vacuum states. In all cases, the Bethe equations reduce to those of the integrable spin-1 chain and exhibit a global SU(2) symmetry, significantly reducing the total number of eigenstates required in the calculation of correlation functions. A similar construction is shown to hold for the calculation of out-of-time-order correlations.


Author(s):  
Nikolai Kitanine ◽  
◽  
Giridhar Kulkarni ◽  
◽  
◽  
...  

In this article we study the thermodynamic limit of the form factors of the XXX Heisenberg spin chain using the algebraic Bethe ansatz approach. Our main goal is to express the form factors for the low-lying excited states as determinants of matrices that remain finite dimensional in the thermodynamic limit. We show how to treat all types of the complex roots of the Bethe equations within this framework. In particular we demonstrate that the Gaudin determinant for the higher level Bethe equations arises naturally from the algebraic Bethe ansatz.


Author(s):  
John S. Van Dyke ◽  
Edwin Barnes ◽  
Sophia Economou ◽  
Rafael I Nepomechie

Abstract The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is the paradigmatic example of a quantum integrable model with open boundary conditions. We formulate a quantum algorithm for preparing Bethe states of this model, corresponding to real solutions of the Bethe equations. The algorithm is probabilistic, with a success probability that decreases with the number of down spins. For a Bethe state of L spins with M down spins, which contains a total of (L M) 2M M! terms, the algorithm requires L + M2+ 2M qubits.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Fiona K. Seibold ◽  
Alessandro Sfondrini

Abstract Two distinct η-deformations of strings on AdS5×S5 can be defined; both amount to integrable quantum deformations of the string non-linear sigma model, but only one is itself a superstring background. In this paper we compare their conjectured all-loop worldsheet S matrices and derive the corresponding Bethe equations. We find that, while the S matrices are apparently different, they lead to the same Bethe equations. Moreover, in either case the eigenvalues of the transfer matrix, which encode the conserved charges of each system, also coincide. We conclude that the integrable structure underlying the two constructions is essentially the same. Finally, we write down the full Bethe-Yang equations describing the asymptotic spectrum of the superstring background.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2124
Author(s):  
Nikolai Bogoliubov ◽  
Andrei Rybin

In this Communication, we consider a generalised Tavis–Cummings model when the damping process is taken into account. We show that the quantum dynamics governed by a non-Hermitian Hamiltonian is exactly solvable using the Quantum Inverse Scattering Method, and the Algebraic Bethe Ansatz. The leakage of photons is described by a Lindblad-type master equation. The non-Hermitian Hamiltonian is diagonalised by state vectors, which are elementary symmetric functions parametrised by the solutions of the Bethe equations. The time evolution of the photon annihilation operator is defined via a corresponding determinant representation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Charlotte Kristjansen ◽  
Dennis Müller ◽  
Konstantin Zarembo

Abstract The encoding of all possible sets of Bethe equations for a spin chain with SU(N|M) symmetry into a QQ-system calls for an expression of spin chain overlaps entirely in terms of Q-functions. We take a significant step towards deriving such a universal formula in the case of overlaps between Bethe eigenstates and integrable boundary states, of relevance for AdS/dCFT, by determining the transformation properties of the overlaps under fermionic as well as bosonic dualities which allows us to move between any two descriptions of the spin chain encoded in the QQ-system. An important part of our analysis involves introducing a suitable regularization for singular Bethe root configurations.


Author(s):  
Peter Koroteev ◽  
Anton M. Zeitlin

Abstract We define and study the space of q-opers associated with Bethe equations for integrable models of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study of the enumerative geometry of cyclic quiver varieties, in particular the ADHM moduli spaces. We define $\left (\overline {GL}(\infty ),q\right )$ -opers with regular singularities and then, by imposing various analytic conditions on singularities, arrive at the desired Bethe equations for toroidal q-opers.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Etienne Granet ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract We consider the problem of analytically continuing energies computed with the Bethe ansatz, as posed by the study of non-compact integrable spin chains. By introducing an imaginary extensive twist in the Bethe equations, we show that one can expand the analytic continuation of energies in the scaling limit around another ‘pseudo-vacuum’ sitting at a negative number of Bethe roots, in the same way as around the usual pseudo-vacuum. We show that this method can be used to compute the energy levels of some states of the SL(2, ℂ) integrable spin chain in the infinite-volume limit, and as a proof of principle recover the ground-state value previously obtained in [1] (for the case of spins s = 0,$$ \overline{s} $$ s ¯ = −1) by extrapolating results in small sizes. These results represent, as far as we know, the first (partial) description of the spectrum of SL(2, ℂ) non-compact spin chains in the thermodynamic limit.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 352
Author(s):  
Nenad Manojlović ◽  
Igor Salom

In this paper we deal with the trigonometric Gaudin model, generalized using a nontrivial triangular reflection matrix (corresponding to non-periodic boundary conditions in the case of anisotropic XXZ Heisenberg spin-chain). In order to obtain the generating function of the Gaudin Hamiltonians with boundary terms we follow an approach based on Sklyanin’s derivation in the periodic case. Once we have the generating function, we obtain the corresponding Gaudin Hamiltonians with boundary terms by taking its residues at the poles. As the main result, we find the generic form of the Bethe vectors such that the off-shell action of the generating function becomes exceedingly compact and simple. In this way—by obtaining Bethe equations and the spectrum of the generating function—we fully implement the algebraic Bethe ansatz for the generalized trigonometric Gaudin model.


2020 ◽  
Vol 18 (4) ◽  
pp. 681-686
Author(s):  
Elena Kuznetsova ◽  
Gregory Fedotenkov

The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The pulsation of a spherical cavity is described by the Kirkwood-Bethe equations, which are one of the most accurate mathematical models of pulsation processes at an arbitrary velocity of the cavity boundary. The Kirkwood-Bethe equations are essentially non-linear, therefore, to construct solutions and parametric analysis of the bubble collapse process under the influence of ultrasound, a numerical algorithm based on the Runge-Kutta method in the Felberg modification of the 4-5th order with an adaptive selection of the integration step in time has been developed and implemented. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies, and to evaluate the influence of various process parameters on the intensity of cavitation. As an example, the results of calculating the process of pulsation of the cavitation pocket in water are given and the influence of the amplitude of ultrasonic vibrations and the initial radius on the process of cavitation of a single bubble is estimated.


Sign in / Sign up

Export Citation Format

Share Document