spin spiral
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Abhiroop Lahiri ◽  
Swapan K Pati

Abstract We have considered and alternating spin-½/spin-1 chain with nearest-neighbor (J1), next-nearest neighbor (J2) antiferromagnetic Heisenberg interactions along with z-component of the Dzyaloshinskii-Moriya(DM) (Dz) interaction. The Hamiltonian has been studied using (a) Linear Spin-Wave Theory(LSWT) and (b) Density Matrix Renormalization Group (DMRG). The system had been reported earlier as a classical ferrimagnet only when nearest neighbor exchange interactions are present. Both the antiferromagnetic next-nearest neighbor interactions and DM interactions introduce strong quantum fluctuations and due to which all the signatures of ferrimagnetism vanishes. We find that the nonzero J2 introduces strong quantum fluctuations in each of the spin sites due to which the z-components of both spin-1 and spin-1/2 sites average out to be zero. The ground state becomes a singlet. The presence of J1 along with Dzintroduces a short range order but develops long range order along the XY plane. J1 along with J2induces competing phases with structure factor showing sharp and wide peaks, at two different angles reflecting the spin spiral structure locally as well as in the underlying lattice. Interestingly, we find that the Dz term removes the local spin spiral structure in z-direction, while developing a spiral order in the XY plane.


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Mahdi Afshar ◽  
Igor I. Mazin

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Cyril Léveillé ◽  
Samuel Flewett ◽  
Erick Burgos-Parra ◽  
Yanis Sassi ◽  
William Legrand ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1933
Author(s):  
András Lászlóffy ◽  
Krisztián Palotás ◽  
Levente Rózsa ◽  
László Szunyogh

We present results for the electronic and magnetic structure of Mn and Fe clusters on Nb(110) surface, focusing on building blocks of atomic chains as possible realizations of topological superconductivity. The magnetic ground states of the atomic dimers and most of the monatomic chains are determined by the nearest-neighbor isotropic interaction. To gain physical insight, the dependence on the crystallographic direction as well as on the atomic coordination number is analyzed via an orbital decomposition of this isotropic interaction based on the spin-cluster expansion and the difference in the local density of states between ferromagnetic and antiferromagnetic configurations. A spin-spiral ground state is obtained for Fe chains along the [11¯0] direction as a consequence of the frustration of the isotropic interactions. Here, a flat spin-spiral dispersion relation is identified, which can stabilize spin spirals with various wave vectors together with the magnetic anisotropy. This may lead to the observation of spin spirals of different wave vectors and chiralities in longer chains instead of a unique ground state.


2021 ◽  
Vol 103 (17) ◽  
Author(s):  
J. Honolka ◽  
S. Krotzky ◽  
M. Herzog ◽  
T. Herden ◽  
V. Sessi ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6541) ◽  
pp. 496-500
Author(s):  
Ryoji Masuda ◽  
Yoshio Kaneko ◽  
Yoshinori Tokura ◽  
Youtarou Takahashi

Controlling the chiral degree of freedom in matter has long been an important issue for many fields of science. The spin-spiral order, which exhibits a strong magnetoelectric coupling, gives rise to chirality irrespective of the atomic arrangement of matter. Here, we report the resonantly enhanced natural optical activity on the electrically active magnetic excitation, that is, electromagnon, in multiferroic cupric oxide. The electric field control of the natural optical activity is demonstrated through magnetically induced chirality endowed with magnetoelectric coupling. These optical properties inherent to multiferroics may lead to optical devices based on the control of chirality.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Peggy Schoenherr ◽  
Sebastian Manz ◽  
Lukas Kuerten ◽  
Konstantin Shapovalov ◽  
Ayato Iyama ◽  
...  

AbstractSpin-spiral multiferroics exhibit a magnetoelectric coupling effects, leading to the formation of hybrid domains with inseparably entangled ferroelectric and antiferromagnetic order parameters. Due to this strong magnetoelectric coupling, conceptually advanced ways for controlling antiferromagnetism become possible and it has been reported that electric fields and laser pulses can reversibly switch the antiferromagnetic order. This switching of antiferromagnetic spin textures is of great interest for the emergent field of antiferromagnetic spintronics. Established approaches, however, require either high voltages or intense laser fields and are currently limited to the micrometer length scale, which forfeits the technological merit. Here, we image and control hybrid multiferroic domains in the spin-spiral system TbMnO3 using low-temperature electrostatic force microscopy (EFM). First, we show that image generation in EFM happens via surface screening charges, which allows for probing the previously hidden magnetically induced ferroelectric order in TbMnO3 (PS = 6 × 10−4 C/m2). We then set the antiferromagnetic domain configuration by acting on the surface screening charges with the EFM probe tip. Our study enables detection of entangled ferroelectric and antiferromagnetic domains with high sensitivity. The spatial resolution is limited only by the physical size of the probe tip, introducing a pathway towards controlling antiferromagnetic order at the nanoscale and with low energy.


Sign in / Sign up

Export Citation Format

Share Document