scholarly journals Impact of pH on Lactate Formation and Utilization by Human Fecal Microbial Communities

2007 ◽  
Vol 73 (20) ◽  
pp. 6526-6533 ◽  
Author(s):  
Alvaro Belenguer ◽  
Sylvia H. Duncan ◽  
Grietje Holtrop ◽  
Susan E. Anderson ◽  
Gerald E. Lobley ◽  
...  

ABSTRACT The human intestine harbors both lactate-producing and lactate-utilizing bacteria. Lactate is normally present at <3 mmol liter−1 in stool samples from healthy adults, but concentrations up to 100 mmol liter−1 have been reported in gut disorders such as ulcerative colitis. The effect of different initial pH values (5.2, 5.9, and 6.4) upon lactate metabolism was studied with fecal inocula from healthy volunteers, in incubations performed with the addition of dl-lactate, a mixture of polysaccharides (mainly starch), or both. Propionate and butyrate formation occurred at pH 6.4; both were curtailed at pH 5.2, while propionate but not butyrate formation was inhibited at pH 5.9. With the polysaccharide mix, lactate accumulation occurred only at pH 5.2, but lactate production, estimated using l-[U-13C]lactate, occurred at all three pH values. Lactate was completely utilized within 24 h at pH 5.9 and 6.4 but not at pH 5.2. At pH 5.9, more butyrate than propionate was formed from l-[U-13C]lactate in the presence of polysaccharides, but propionate, formed mostly by the acrylate pathway, was the predominant product with lactate alone. Fluorescent in situ hybridization demonstrated that populations of Bifidobacterium spp., major lactate producers, increased approximately 10-fold in incubations with polysaccharides. Populations of Eubacterium hallii, a lactate-utilizing butyrate-producing bacterium, increased 100-fold at pH 5.9 and 6.4. These experiments suggest that lactate is rapidly converted to acetate, butyrate, and propionate by the human intestinal microbiota at pH values as low as 5.9, but at pH 5.2 reduced utilization occurs while production is maintained, resulting in lactate accumulation.

2014 ◽  
Vol 69 (9) ◽  
pp. 1886-1893 ◽  
Author(s):  
Chaeyoung Lee ◽  
Sewook Lee ◽  
Sun-Kee Han ◽  
Sunjin Hwang

This study was performed to investigate the influence of operational pH on dark H2 fermentation of food waste by employing anaerobic batch reactors. The highest maximum H2 yield was 1.63 mol H2/mol hexoseadded at operational pH 5.3, whereas the lowest maximum H2 yield was 0.88 mol H2/mol hexoseadded at operational pH 7.0. With decreasing operational pH values, the n-butyrate concentration tended to increase and the acetate concentration tended to decrease. The highest hydrogen conversion efficiency of 11.3% was obtained at operational pH 5.3, which was higher than that (8.3%) reported by a previous study (Kim et al. (2011) ‘Effect of initial pH independent of operational pH on hydrogen fermentation of food waste’, Bioresource Technology 102 (18), 8646–8652). The new result indicates that the dark fermentation of food waste was stable and efficient in this study. Fluorescence in situ hybridization (FISH) analysis showed that Clostridium species Cluster I accounted for 84.7 and 13.3% of total bacteria at operational pH 5.3 and pH 7.0, respectively, after 48 h operation.


2012 ◽  
Vol 1444 ◽  
Author(s):  
Jingjie Niu ◽  
Udo Becker ◽  
Rodney Ewing

ABSTRACTUranyl adsorption/reduction by Fe2+ on hematite and pyrite has been studied at neutral pH under anoxic and CO2-free conditions. XPS results confirm that more U3O8 precipitates on hematite than on pyrite reacted for 24 h in 160 μM uranyl nitrate and 160 μM Fe2+ solution at initial pH 7.3. These results are explained in terms of co-adsorption energy and U atom Mulliken charge transfer by quantum mechanical calculations. Moreover, in situ fluid tapping-mode AFM experiments on hematite indicate a deceleration of the U reduction rate within 24 h due to the passivation of the surface caused by the formation of orthorhombic U3O8 crystals. In addition, crystals observed using AFM show morphologies of orthorhombic schoepite appearing on hematite after 5 h.


2009 ◽  
Vol 60 (9) ◽  
pp. 2345-2352 ◽  
Author(s):  
Z. Liao ◽  
Z. Gu ◽  
M. C. Schulz ◽  
J. R. Davis ◽  
J. C. Baygents ◽  
...  

This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)4), Ca2 +  and Mg2 + . The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses ≤3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca2 +  and Mg2 +  as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca2 +  and Mg2 +  by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.


2000 ◽  
Vol 278 (3) ◽  
pp. E522-E534 ◽  
Author(s):  
Michelle L. Parolin ◽  
Lawrence L. Spriet ◽  
Eric Hultman ◽  
Melanie G. Hollidge-Horvat ◽  
Norman L. Jones ◽  
...  

The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O2 (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free Pi, in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDHa) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [Pi]. At the end of exercise, PDHawas greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.


2021 ◽  
Author(s):  
Bernardo Patella ◽  
Robert Daly ◽  
Ian Seymour ◽  
Pierre Lovera ◽  
James Rohan ◽  
...  

In electroanalysis, solution pH is a critical parameter that often needs to be adjusted and controlled for the detection of particular analytes. This is most commonly performed by the addition of chemicals, such as strong acids or bases. Electrochemical in-situ pH control offers the possibility for the local adjustment of pH at the point of detection, without additional reagents. FEA simulations have been performed to guide experimental design for both electroanalysis and in-situ control of solution pH. No previous model exists that describes the generation of protons at an interdigitated electrode array in buffered solution with one comb acting as a protonator, and the other as the sensor. In this work, FEA models are developed to provide insight into the optimum conditions necessary for electrochemical pH control. The magnitude of applied galvanostatic current has a direct relation to the flux of protons generated and subsequent change in pH. Increasing the separation between the electrodes increases the time taken for protons to diffuse across the gap. The final pH achieved at both, protonators and sensor electrodes, after 1 second, was shown to be largely uninfluenced by the initial pH of the solution. The impact of buffer concentration was modelled and investigated. In practice, the pH at the electrode surface was probed by means of cyclic voltammetry, i.e., by cycling a gold electrode in solution and identifying the potential of the gold oxide reduction peak. A pH indicator, methyl red, was used to visualise the solution pH change at the electrodes, comparing well with the model’s prediction


Author(s):  
T Mann

Background. Lactate or, as it was customarily known, ‘lactic acid’ was one of the first molecules to attract the attention of early exercise scientists, mainly because blood lactate concentration could be measured and was shown to increase with increasing exercise intensity. This connection resulted in lactate being associated with numerous other events associated with high-intensity exercise including muscle cramps, fatigue, acidosis and post-exercise muscle soreness. Nobel prize-winning research by AV Hill and Otto Meyerhof provided a rational explanation linking lactate to anaerobiosis and acidosis, which resulted in this relationship being widely accepted as fact. It was only following isotopic tracer studies of George Brooks and others that the true role of lactate during rest and exercise was revealed. Conclusions. Lactate is now acknowledged as an important intermediate of carbohydrate metabolism, taken up from the blood by tissues such as skeletal and cardiac muscle as a substrate for oxidation. Furthermore, lactate formation consumes a proton, thereby buffering against muscle acidosis. For this reason, lactate production forms an essential aid to endurance performance rather than a hindrance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Analía Rodríguez ◽  
Patricia Lema ◽  
María Inés Bessio ◽  
Guillermo Moyna ◽  
Cristina Olivaro ◽  
...  

The effect on color of the initial pH employed in dulce de leche (DL) production was evaluated through physicochemical and spectroscopical characterization of the melanoidins formed in the process. Melanoidins originated at pH values of 6.5, 7.0, and 7.5, and they were released by the enzymatic hydrolysis of the protein backbone and purified by gel filtration. They showed a significant degree of polydispersity, in general, with molecular weights (MWs) below 1,800 Da. DL produced at a higher pH released melanoidins with higher average MW after the enzymatic hydrolysis. They also presented darker colors (dE*ab, C*), more closely resembling those typical of the commercial product. Analysis of the fractions isolated by gel filtration using HPLC-DAD and multinuclear NMR showed an heterogeneous and complex composition. Even though structurally related, the 1H NMR spectra of melanoidins showed a higher degree of aromaticity at higher pH values. In conclusion, the pH employed in DL production affects the amount and structure of the colored products originated by MR reactions, and thus the color of the final product.


2021 ◽  
Author(s):  
Linyu Wei ◽  
Jing Tian ◽  
Qing Wang ◽  
Yuanyuan Liu ◽  
Yi Yu ◽  
...  

Abstract g-C3N4/TiO2 composite has excellent photoelectric properties and is considered as a good carrier of nanoparticles. A novel composite of nZVI-g-C3N4/TiO2 was successfully synthesized through in-situ growth nZVI on the surface of g-C3N4/TiO2 with liquid phase reduction method. The composite was characterized by TEM, XRD, EDS and evaluated its nitrate removal efficiency. The effects of composite dosage, solution initial pH and HCOOH concentration on nitrate reduction were investigated. The results showed that nitrate was rapidly reduced by nZVI-g-C3N4/TiO2 composite. The dosage of 4 g/L nZVI-g-C3N4/TiO2 composite and 3.0 mM of HCOOH concentration was more suitable for nitrate reduction. Solution initial pH had little impact on the nitrate reduction efficiency, but affected the proportion of the nitrate reduction products. The mechanism of nitrate reduction in the nZVI-gC3N4/TiO2/HCOOH-Xe-lamp system was proposed. The nZVI-gC3N4/TiO2 composite could be considered as a viable and promising technology for water pollution remediation.


1977 ◽  
Author(s):  
J.W.N. Akkerman ◽  
G. Gorter ◽  
J.J. Sixma

Energy requirements for maintenance of stable adenylate energy charge (AEC) and metabolic ATP(ATP-m)level were studied in gel filtered platelets at various degrees of starvation. Platelets gel filtered and subsequently incubated during 40 min.at 37°C with 1mM CN- and without glucose consumed their glycogen at a rate of 0.79 ± 0.23(± SD, n=6)/μmol glycosyl residues .min-1 10-11 cells. During this period AEC and ATP-m decreased linearly with time at rates of 5-6.10-3 and 0.75-1.05% of total radioactive adenine nucleotides .min-1.10-11 cells respectively. Addition of 25–1000μM glucose increased lactate production and decreased the fall of AEC and ATP-m proportional to the amounts of glucose added. Glycogenolysis remained active below 100μM glucose but ceased at higher glucose concentrations. From these data ATP-m production from glycogenolysis and glycolysis was calculated and compared with the decrease of steady state levels of AEC and ATP-m. A production of 3μmol ATP-m.min-1.10-11 cells was required to maintain initial AEC and ATP-m level. At lower rates of ATP-m production these values fell without reaching stable steady state levels in a lower range. After 40-50 min variations in AEC and ATP-m ceased and lactate formation stopped leaving the cells in a state of hybernation. Subsequent addition of glucoserestored lactate accumulation, AEC and ATP-m. On the basis of formation and steady state levels of ATP-m its consumption was calculated. A lowering production was not completely met by a lowering consumption. Energy consumption in resting platelets is therefore partly independent from energy production.


Sign in / Sign up

Export Citation Format

Share Document