query sample
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 2082 (1) ◽  
pp. 012021
Author(s):  
Bingsen Guo

Abstract Data classification is one of the most critical issues in data mining with a large number of real-life applications. In many practical classification issues, there are various forms of anomalies in the real dataset. For example, the training set contains outliers, often enough to confuse the classifier and reduce its ability to learn from the data. In this paper, we propose a new data classification improvement approach based on kernel clustering. The proposed method can improve the classification performance by optimizing the training set. We first use the existing kernel clustering method to cluster the training set and optimize it based on the similarity between the training samples in each class and the corresponding class center. Then, the optimized reliable training set is trained to the standard classifier in the kernel space to classify each query sample. Extensive performance analysis shows that the proposed method achieves high performance, thus improving the classifier’s effectiveness.


Author(s):  
Zhizheng Zhang ◽  
Cuiling Lan ◽  
Wenjun Zeng ◽  
Zhibo Chen ◽  
Shih-Fu Chang

Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set based on their feature similarities. A neural network has different uncertainties on its calculated similarities of different pairs. Understanding and modeling the uncertainty on the similarity could promote the exploitation of limited samples in few-shot optimization. In this work, we propose Uncertainty-Aware Few-Shot framework for image classification by modeling uncertainty of the similarities of query-support pairs and performing uncertainty-aware optimization. Particularly, we exploit such uncertainty by converting observed similarities to probabilistic representations and incorporate them to the loss for more effective optimization. In order to jointly consider the similarities between a query and the prototypes in a support set, a graph-based model is utilized to estimate the uncertainty of the pairs. Extensive experiments show our proposed method brings significant improvements on top of a strong baseline and achieves the state-of-the-art performance.


Author(s):  
Sheung Wai Chan ◽  
Yiu-Ming Cheung

The existing image retrieval methods generally require at least one complete image as a query sample. From the practical point of view, a user may not have an image sample in hand for query. Instead, partial information from multiple image samples would be available. This paper therefore attempts to deal with this problem by presenting a novel framework that allows a user to make an image query composed of several partial information extracted from multiple image samples via Boolean operations (i.e. AND, OR and NOT). Based on the request from the query, a Descriptor Cluster Label Table (DCLT) is designed to efficiently find out the result of Boolean operations on partial information. Experiments show the promising result of the proposed framework on commodity query and criminal investigation, respectively, although it is essentially applicable to different scenarios as well by changing descriptors.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-71
Author(s):  
Arya Widyadhana ◽  
Cornelius Bagus Purnama Putra ◽  
Rarasmaya Indraswari ◽  
Agus Zainal Arifin

K-nearest neighbor (KNN) is an effective nonparametric classifier that determines the neighbors of a point based only on distance proximity. The classification performance of KNN is disadvantaged by the presence of outliers in small sample size datasets and its performance deteriorates on datasets with class imbalance. We propose a local Bonferroni Mean based Fuzzy K-Nearest Centroid Neighbor (BM-FKNCN) classifier that assigns class label of a query sample dependent on the nearest local centroid mean vector to better represent the underlying statistic of the dataset. The proposed classifier is robust towards outliers because the Nearest Centroid Neighborhood (NCN) concept also considers spatial distribution and symmetrical placement of the neighbors. Also, the proposed classifier can overcome class domination of its neighbors in datasets with class imbalance because it averages all the centroid vectors from each class to adequately interpret the distribution of the classes. The BM-FKNCN classifier is tested on datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository and benchmarked with classification results from the KNN, Fuzzy-KNN (FKNN), BM-FKNN and FKNCN classifiers. The experimental results show that the BM-FKNCN achieves the highest overall average classification accuracy of 89.86% compared to the other four classifiers.


Author(s):  
Pei Zhang ◽  
YIng Li ◽  
Dong Wang ◽  
Yunpeng Bai

CNN-based methods have dominated the field of aerial scene classification for the past few years. While achieving remarkable success, CNN-based methods suffer from excessive parameters and notoriously rely on large amounts of training data. In this work, we introduce few-shot learning to the aerial scene classification problem. Few-shot learning aims to learn a model on base-set that can quickly adapt to unseen categories in novel-set, using only a few labeled samples. To this end, we proposed a meta-learning method for few-shot classification of aerial scene images. First, we train a feature extractor on all base categories to learn a representation of inputs. Then in the meta-training stage, the classifier is optimized in the metric space by cosine distance with a learnable scale parameter. At last, in the meta-testing stage, the query sample in the unseen category is predicted by the adapted classifier given a few support samples. We conduct extensive experiments on two challenging datasets: NWPU-RESISC45 and RSD46-WHU. The experimental results show that our method outperforms three state-of-the-art few-shot algorithms and one typical CNN-based method, D-CNN. Furthermore, several ablation experiments are conducted to investigate the effects of dataset scale and support shots; the experiment results confirm that our model is specifically effective in few-shot settings.


Author(s):  
Mohsen Tabejamaat ◽  
Hoda Mohammadzade

Recent years have seen an increasing trend in developing 3D action recognition methods. However, despite the advances, existing models still suffer from some major drawbacks including the lack of any provision for recognizing action sequences with some missing frames. This significantly hampers the applicability of these methods for online scenarios, where only an initial part of sequences are already provided. In this paper, we introduce a novel sequence-to-sequence representation-based algorithm in which a query sample is characterized using a collaborative frame representation of all the training sequences. This way, an optimal classifier is tailored for the existing frames of each query sample, making the model robust to the effect of missing frames in sequences (e.g. in online scenarios). Moreover, due to the collaborative nature of the representation, it implicitly handles the problem of varying styles during the course of activities. Experimental results on three publicly available databases, UTKinect, TST fall, and UTD-MHAD, respectively, show 95.48%, 90.91%, and 91.67% accuracy when using the beginning 75% portion of query sequences and 84.42%, 60.98%, and 87.27% accuracy for their initial 50%.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4045
Author(s):  
Yuhua Li ◽  
Zhihui Luo ◽  
Fengjie Wang ◽  
Yingxu Wang

Collaborative representation (CR)-based classification has been successfully applied to plant disease recognition in cases with sufficient training samples of each disease. However, collecting enough training samples is usually time consuming and labor-intensive. Moreover, influenced by the non-ideal measurement environment, samples may be corrupted by variables introduced by bad illumination and occlusions of adjacent leaves. Consequently, an extended collaborative representation (ECR)-based classification model is presented in this paper. Then, it is applied to cucumber leaf disease recognition, which constructs a pure spectral library consisting of several representative samples for each disease and designs a universal variation spectral library that deals with linear variables superimposed on samples. Thus, each query sample is encoded as a linear combination of atoms from these two spectral libraries and disease identity is determined by the disease of minimal reconstruction residuals. Experiments are conducted on spectral curves extracted from normal leaves and the disease lesions of leaves infected with cucumber anthracnose and brown spot. The diagnostic accuracy is higher than 94.7% and the average online diagnosis time is short, about 1 to 1.3 ms. The results indicate that the ECR-based classification model is feasible in the fast and accurate diagnosis of cucumber leaf diseases.


Author(s):  
Mohsen Tabejamaat ◽  
Abdolmajid Mousavi ◽  
Marina L. Gavrilova

Rapid growth of social networks has provided an extraordinary medium to share a large volume of photographs online. This calls for designing efficient face recognition techniques that are applicable to images with low resolutions and arbitrary poses. This paper proposes a new pose invariant face recognition method for low resolution images using only a single training sample. A 3D model, reconstructed using Generic Elastic Model (3D GEM) from a frontal view training sample, is used to generate a set of nonfrontal gallery face images. The face region of the nonfrontal query sample is then extracted using the same landmark detection technique as in the 3D GEM algorithm. Afterwards, a novel texture representation technique called Local Comparative Decimal Pattern (LCDP) is proposed to extract features from each of the training and query samples. A set of experimental results on the ORL, Georgia Tech (GT), and LFW face databases demonstrates the efficiency of the proposed method compared to other state-of-the-art approaches.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 234 ◽  
Author(s):  
Sumet Mehta ◽  
Xiangjun Shen ◽  
Jiangping Gou ◽  
Dejiao Niu

The K-nearest neighbour classifier is very effective and simple non-parametric technique in pattern classification; however, it only considers the distance closeness, but not the geometricalplacement of the k neighbors. Also, its classification performance is highly influenced by the neighborhood size k and existing outliers. In this paper, we propose a new local mean based k-harmonic nearest centroid neighbor (LMKHNCN) classifier in orderto consider both distance-based proximity, as well as spatial distribution of k neighbors. In our method, firstly the k nearest centroid neighbors in each class are found which are used to find k different local mean vectors, and then employed to compute their harmonic mean distance to the query sample. Lastly, the query sample is assigned to the class with minimum harmonic mean distance. The experimental results based on twenty-six real-world datasets shows that the proposed LMKHNCN classifier achieves lower error rates, particularly in small sample-size situations, and that it is less sensitive to parameter k when compared to therelated four KNN-based classifiers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Muhamamd Adnan Syed ◽  
Zhenjun Han ◽  
Zhaoju Li ◽  
Jianbin Jiao

In person reidentification distance metric learning suffers a great challenge from impostor persons. Mostly, distance metrics are learned by maximizing the similarity between positive pair against impostors that lie on different transform modals. In addition, these impostors are obtained from Gallery view for query sample only, while the Gallery sample is totally ignored. In real world, a given pair of query and Gallery experience different changes in pose, viewpoint, and lighting. Thus, impostors only from Gallery view can not optimally maximize their similarity. Therefore, to resolve these issues we have proposed an impostor resilient multimodal metric (IRM3). IRM3 is learned for each modal transform in the image space and uses impostors from both Probe and Gallery views to effectively restrict large number of impostors. Learned IRM3 is then evaluated on three benchmark datasets, VIPeR, CUHK01, and CUHK03, and shows significant improvement in performance compared to many previous approaches.


Sign in / Sign up

Export Citation Format

Share Document