human fgf21
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A288-A288
Author(s):  
Adam S Kinne ◽  
Sanofar J Abdeen ◽  
Elijah S Parmer ◽  
Jennifer A Thystrup ◽  
Erik J Tillman ◽  
...  

Abstract Efruxifermin (EFX) is a novel Fc-fusion analog of human fibroblast growth factor 21 (FGF21), currently in clinical development as a potential treatment for non-alcoholic steatohepatitis (NASH). Each molecule of EFX consists of two modified FGF21 molecules, each attached at their N-termini to a human IgG1 Fc domain by a short polyglycine-serine linker. The FGF21 moiety of EFX incorporates three amino acid substitutions (L98R, P171G, and A180E relative to native FGF21). Two of these are proximal to the C-terminus (P171G and A180E), and reduce cleavage and inactivation by an endogenous protease, fibroblast activation protein (FAP), thereby prolonging its half-life. Fusion to human IgG1 Fc domain further extends circulating half-life, enabling once-weekly subcutaneous dosing. Accordingly, to support on-going clinical development of EFX, a specific assay is needed to distinguish intact EFX from both endogenous FGF21 and any in vivo biotransformation products of EFX that display reduced pharmacology. To maximize the antigenicity of EFX, FGF21 amino acid sequences were compared across species. Based on this, an antibody generation campaign was initiated in both rabbits and chickens. Comparison of titer responses against EFX and human FGF21 suggested that antisera from chickens was superior to rabbit antisera. Following a scaled-up, 12-week antibody campaign, antisera were purified by a combination of batch and column chromatographic procedures. By exploiting differences in structure and amino acid sequence of EFX relative to human FGF21, a purification strategy was designed to isolate chicken antibodies with increased specificity for EFX unique sequences. This reagent is being used as a capture antibody in the development of a noncompetitive ECLIA employing chemiluminescence detection. Presently, a number of different antibodies are being evaluated for potential pairing with the specific capture. We conclude that application of affinity purified chicken anti-EFX IgY will enable sensitive and specific determination of EFX in biological matrices with decreased cross-reactivity from endogenous hFGF21 and EFX metabolites.


2020 ◽  
Vol 11 (1) ◽  
pp. 67-78 ◽  
Author(s):  
W.-Y. Cao ◽  
M. Dong ◽  
Z.-Y. Hu ◽  
J. Wu ◽  
Y.-C. Li ◽  
...  

Fibroblast growth factor 21 (FGF21), a metabolism regulator, has an important effect on metabolic diseases, such as obesity and diabetes. It is also expressed in mice, and the murine source has high homology with human FGF21. Recently, it has been extensively studied and has become a potential drug target for the treatment of metabolic diseases. As it is a protein-based hormone, FGF21 cannot be easily and quickly absorbed into the blood through oral administration. Moreover, it has a 0-2 h half-life in vivo, as shown in a previous study, thus its efficacy lasts for a short period of time when used to treat metabolic diseases, limiting its clinical applications. To avoid these limitations, we used Lactococcus lactis, a food-grade bacterium, as the host to express FGF21. It could be used successfully for the expression and long-term effect of FGF21 in vivo. Instead of antibiotic resistance genes, the LacF gene was used as a selection marker in the NZ3900/PNZ8149 expression system, which is safe and could reduce the antibiotic resistance crisis. In this study, we a constructed human FGF21 expressing L. lactis strain and administered it to Db/Db mice by gavage. Compared with the control group, the body weight of mice in the experimental group was significantly reduced, and the overall homeostasis was improved in mice treated with human FGF21. Moreover, the activity of brown adipose tissue was enhanced. These results revealed that oral administration of FGF21 through heterologous expression in L. lactis appears to be an effective approach for its clinical application.


2018 ◽  
Author(s):  
Susanna Søberg ◽  
Emilie S. Andersen ◽  
Niels B. Dalgaard ◽  
Ida Jarlhelt ◽  
Nina L. Hansen ◽  
...  

ABSTRACTObjectiveExcessive alcohol consumption is a leading cause of global morbidity and mortality. However, knowledge of the biological factors that influence adlibitumalcohol intake may be incomplete. Two large studies recently linked variants in theKLBlocus with levels of alcohol intake in humans.KLBencodes ß-klotho, co-receptor for the liver-derived hormone fibroblast growth factor 21 (FGF21). In mice, FGF21 reduces alcohol intake, and humanFgf21variants are enriched among heavy drinkers. Thus, the liver may limit alcohol consumption by secreting FGF21. However, whether full-length, active plasma FGF21 (FGF21 (1-181)) levels in humans increase acutely or sub-chronically in response to alcohol ingestion is uncertain.MethodsWe recruited 10 healthy, fasted male subjects to receive an oral water or alcohol bolus with concurrent blood sampling for FGF21 (1-181) measurement in plasma. In addition, we measured circulating FGF21 (1-181) levels, liver stiffness, triglyceride, and other metabolic parameters in three healthy Danish men before and after consuming an average of 22.6 beers/person/day (4.4 g/kg/day of ethanol) for three days during Oktoberfest 2017 in Munich, Germany. We further correlated fasting FGF21 (1-181) levels in 49 healthy, non-alcoholic subjects of mixed sex with self-reports of alcohol-related behaviors, emotional responses, and problems. Finally, we characterized the effect of recombinant human FGF21 injection on adlibitumalcohol intake in mice.ResultsWe show that alcohol ingestion (25.3 grams or ~2.5 standard drinks) acutely increases plasma levels of FGF21 (1-181) 3.4-fold in fasting humans. We also find that binge drinking for three days at Oktoberfest is associated with a 2.1-fold increase in baseline FGF21 (1-181) levels, in contrast to minor deteriorations in metabolic and hepatic biomarkers. However, basal FGF21 (1-181) levels were not correlated with differences in alcohol-related behaviors, emotional responses, or problems in our non-alcoholic subjects. Finally, we show that once-daily injection of recombinant human FGF21 reduces adlibitumalcohol intake by 21% in mice.ConclusionsFGF21 (1-181) is markedly increased in circulation by both acute and sub-chronic alcohol intake in humans, and reduces alcohol intake in mice. These observations are consistent with a role for FGF21 as an endocrine inhibitor of alcohol appetite in humans.


2016 ◽  
Vol 473 (9) ◽  
pp. 1125-1127 ◽  
Author(s):  
Matthew P. Gillum ◽  
Matthew J. Potthoff

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21.


2012 ◽  
Vol 443 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Ana Luísa De Sousa-Coelho ◽  
Pedro F. Marrero ◽  
Diego Haro

Nutrient deprivation or starvation frequently correlates with amino acid limitation. Amino acid starvation initiates a signal transduction cascade starting with the activation of the kinase GCN2 (general control non-derepressible 2) phosphorylation of eIF2 (eukaryotic initiation factor 2), global protein synthesis reduction and increased ATF4 (activating transcription factor 4). ATF4 modulates a wide spectrum of genes involved in the adaptation to dietary stress. The hormone FGF21 (fibroblast growth factor 21) is induced during fasting in liver and its expression induces a metabolic state that mimics long-term fasting. Thus FGF21 is critical for the induction of hepatic fat oxidation, ketogenesis and gluconeogenesis, metabolic processes which are essential for the adaptive metabolic response to starvation. In the present study, we have shown that FGF21 is induced by amino acid deprivation in both mouse liver and cultured HepG2 cells. We have identified the human FGF21 gene as a target gene for ATF4 and we have localized two conserved ATF4-binding sequences in the 5′ regulatory region of the human FGF21 gene, which are responsible for the ATF4-dependent transcriptional activation of this gene. These results add FGF21 gene induction to the transcriptional programme initiated by increased levels of ATF4 and offer a new mechanism for the induction of the FGF21 gene expression under nutrient deprivation.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e22976 ◽  
Author(s):  
Takashi Uebanso ◽  
Yutaka Taketani ◽  
Hironori Yamamoto ◽  
Kikuko Amo ◽  
Hirokazu Ominami ◽  
...  

2011 ◽  
Vol 93 (2) ◽  
pp. 613-621 ◽  
Author(s):  
Minjing Zhang ◽  
Xuebin Jiang ◽  
Zhijian Su ◽  
Jiancong Lin ◽  
Qi Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document