intracellular chloride concentration
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 0)

2022 ◽  
pp. 074873042110597
Author(s):  
Nathan J. Klett ◽  
Olga Cravetchi ◽  
Charles N. Allen

Both inhibitory and excitatory GABA transmission exist in the mature suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. Whether GABA is inhibitory or excitatory depends on the intracellular chloride concentration ([Cl−]i). Here, using the genetically encoded ratiometric probe Cl-Sensor, we investigated [Cl−]i in AVP and VIP-expressing SCN neurons for several days in culture. The chloride ratio (RCl) demonstrated circadian rhythmicity in AVP + neurons and VIP + neurons, but was not detected in GFAP + astrocytes. RCl peaked between ZT 7 and ZT 8 in both AVP + and VIP + neurons. RCl rhythmicity was not dependent on the activity of several transmembrane chloride carriers, action potential generation, or the L-type voltage-gated calcium channels, but was sensitive to GABA antagonists. We conclude that [Cl−]i is under circadian regulation in both AVP + and VIP + neurons.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yehezkel Ben-Ari

AbstractBenzodiazepines (BZDs) such as Zolpidem can produce a temporary revival of patients who have been akinetic and apathic for years. The mechanisms underlying this “awakening” reaction are suggested globally to be related to an activation of gamma-aminobutyric acid (GABA) inhibitory systems. However, brain trauma or cerebro-vascular infarcts, like many other pathological insults, are associated with a shift of the polarity of GABA from inhibition to excitation consequently to an increase of intracellular chloride concentration ([Cl−]i) levels. Experimental and clinical observations suggest that BZDs generate paradoxical reactions in these conditions, hence the transient “awakening”. The NKCC1 (Na-K-2Cl co-transporter isoform 1) chloride importer antagonist Bumetanide restores low [Cl−]i levels and an efficient inhibitory drive. It is therefore suggested that the administration of Bumetanide might provide a persistent “awakening” by shifting GABAergic actions from excitation to inhibition and attenuating the mechanism underlying the apathic/akinetic state.


2020 ◽  
Vol 319 (2) ◽  
pp. C371-C380
Author(s):  
Diana Pacheco-Alvarez ◽  
Diego Luis Carrillo-Pérez ◽  
Adriana Mercado ◽  
Karla Leyva-Ríos ◽  
Erika Moreno ◽  
...  

Cation-coupled chloride cotransporters (CCC) play a role in modulating intracellular chloride concentration ([Cl−]i) and cell volume. Cell shrinkage and cell swelling are accompanied by an increase or decrease in [Cl−]i, respectively. Cell shrinkage and a decrease in [Cl−]i increase the activity of NKCCs (Na-K-Cl cotransporters: NKCC1, NKCC2, and Na-Cl) and inhibit the activity of KCCs (K-Cl cotransporters: KCC1 to KCC4), wheras cell swelling and an increase in [Cl−]i activate KCCs and inhibit NKCCs; thus, it is unlikely that the same kinase is responsible for both effects. WNK1 and WNK4 are chloride-sensitive kinases that modulate the activity of CCC in response to changes in [Cl−]i. Here, we showed that WNK3, another member of the serine-threonine kinase WNK family with known effects on CCC, is not sensitive to [Cl−]i but can be regulated by changes in extracellular tonicity. In contrast, WNK4 is highly sensitive to [Cl−]i but is not regulated by changes in cell volume. The activity of WNK3 toward NaCl cotransporter is not affected by eliminating the chloride-binding site of WNK3, further confirming that the kinase is not sensitive to chloride. Chimeric WNK3/WNK4 proteins were produced, and analysis of the chimeras suggests that sequences within the WNK’s carboxy-terminal end may modulate the chloride affinity. We propose that WNK3 is a cell volume-sensitive kinase that translates changes in cell volume into phosphorylation of CCC.


2018 ◽  
Vol 315 (3) ◽  
pp. F734-F745 ◽  
Author(s):  
Eduardo R. Argaiz ◽  
Maria Chavez-Canales ◽  
Mauricio Ostrosky-Frid ◽  
Alejandro Rodríguez-Gama ◽  
Norma Vázquez ◽  
...  

Familial hyperkalemic hypertension (FHHt) can be mainly attributed to increased activity of the renal Na+:Cl− cotransporter (NCC), which is caused by altered expression and regulation of the with-no-lysine (K) 1 (WNK1) or WNK4 kinases. The WNK1 gene gives rise to a kidney-specific isoform that lacks the kinase domain (KS-WNK1), the expression of which occurs primarily in the distal convoluted tubule. The role played by KS-WNK1 in the modulation of the WNK/STE20-proline-alanine rich kinase (SPAK)/NCC pathway remains elusive. In the present study, we assessed the effect of human KS-WNK1 on NCC activity and on the WNK4-SPAK pathway. Microinjection of oocytes with human KS-WNK1 cRNA induces remarkable activation and phosphorylation of SPAK and NCC. The effect of KS-WNK1 was abrogated by eliminating a WNK-WNK-interacting domain and by a specific WNK inhibitor, WNK463, indicating that the activation of SPAK/NCC by KS-WNK1 is due to interaction with another WNK kinase. Under control conditions in oocytes, the activating serine 335 of the WNK4 T loop is not phosphorylated. In contrast, this serine becomes phosphorylated when the intracellular chloride concentration ([Cl−]i) is reduced or when KS-WNK1 is coexpressed with WNK4. KS-WNK1-mediated activation of WNK4 is not due to a decrease of the [Cl−]i. Coimmunoprecipitation analysis revealed that KS-WNK1 and WNK4 interact with each other and that WNK4 becomes autophosphorylated at serine 335 when it is associated with KS-WNK1. Together, these observations suggest that WNK4 becomes active in the presence of KS-WNK1, despite a constant [Cl−]i.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Diana Pacheco‐Alvarez ◽  
Diego Luis Carrillo‐Pérez ◽  
Adriana Mercado ◽  
Karla Leyva‐Ríos ◽  
Erika Moreno ◽  
...  

2018 ◽  
Vol 29 (5) ◽  
pp. 1449-1461 ◽  
Author(s):  
Qifei Sun ◽  
Yipin Wu ◽  
Sima Jonusaite ◽  
John M. Pleinis ◽  
John M. Humphreys ◽  
...  

Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.


2017 ◽  
Author(s):  
Juan Carlos Boffi ◽  
Johannes Knabbe ◽  
Michaela Kaiser ◽  
Thomas Kuner

AbstractNeuronal intracellular Cl- concentration ([Cl-]i) influences a wide range of processes such as neuronal inhibition, membrane potential dynamics, intracellular pH (pHi) or cell volume. Up to date, neuronal [Cl-]i has predominantly been studied in model systems of reduced complexity. Here, we implemented the genetically encoded ratiometric Cl- indicator Superclomeleon (SCLM) to estimate the steady-state [Cl-]i in cortical neurons from anesthetized and awake mice using 2-photon microscopy. Additionally, we implemented superecliptic pHluorin as a ratiometric sensor to estimate the intracellular steady-state pH (pHi) of mouse cortical neurons in vivo. We estimated an average resting [Cl-]i of 6 ± 2 mM with no evidence of subcellular gradients in the proximal somato-dendritic domain and an average somatic pHi of 7.1 ± 0.1. Neither [Cl-]i nor pHi were affected by isoflurane anesthesia. We deleted the cation-Cl- co-transporter KCC2 in single identified neurons of adult mice and found an increase of [Cl-]i to approximately 26 ± 8 mM, demonstrating that under in vivo conditions KCC2 produces low [Cl-]i in adult mouse neurons. In summary, neurons of the brain of awake adult mice exhibit a low and evenly distributed [Cl-]i in the proximal somato-dendritic compartment that is independent of anesthesia and requires KCC2 expression for its maintenance.


Sign in / Sign up

Export Citation Format

Share Document