excitatory gaba
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
pp. 074873042110597
Author(s):  
Nathan J. Klett ◽  
Olga Cravetchi ◽  
Charles N. Allen

Both inhibitory and excitatory GABA transmission exist in the mature suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. Whether GABA is inhibitory or excitatory depends on the intracellular chloride concentration ([Cl−]i). Here, using the genetically encoded ratiometric probe Cl-Sensor, we investigated [Cl−]i in AVP and VIP-expressing SCN neurons for several days in culture. The chloride ratio (RCl) demonstrated circadian rhythmicity in AVP + neurons and VIP + neurons, but was not detected in GFAP + astrocytes. RCl peaked between ZT 7 and ZT 8 in both AVP + and VIP + neurons. RCl rhythmicity was not dependent on the activity of several transmembrane chloride carriers, action potential generation, or the L-type voltage-gated calcium channels, but was sensitive to GABA antagonists. We conclude that [Cl−]i is under circadian regulation in both AVP + and VIP + neurons.


2021 ◽  
pp. 074873042110480
Author(s):  
Fernando Osuna-Lopez ◽  
Miriam E. Reyes-Mendez ◽  
J. Manuel Herrera-Zamora ◽  
Jose Luis Gongora-Alfaro ◽  
Eloy G. Moreno-Galindo ◽  
...  

The suprachiasmatic nucleus (SCN) of the hypothalamus is the brain structure that controls circadian rhythms in mammals. The SCN is formed by two neuroanatomical regions: the ventral and dorsal. Gamma-aminobutyric acid (GABA) neurotransmission is important for the regulation of circadian rhythms. Excitatory GABA effects have been described in both SCN regions displaying a circadian variation. Moreover, the GABAergic system transfers photic information from the ventral to the dorsal SCN. However, there is almost no knowledge about GABA neurotransmission during the prenatal or postnatal development of the SCN. Here, we used whole-cell patch-clamp recordings to study spontaneous inhibitory postsynaptic currents (IPSCs) in the two SCN regions, at two zeitgeber times (day or night), and at four postnatal (P) ages: P3-5, P7-9, P12-15, and P20-25. The results herein show that the three analyzed parameters of the IPSCs, frequency, amplitude, and decay time, were significantly affected by the postnatal age: mostly, the IPSC frequency increased with age, principally in the ventral SCN in both day and night recordings; similarly, the amplitude of IPSCs augmented with age, especially at night, whereas the IPSC decay time was reduced (it was faster) with postnatal age, mainly during the day. Our findings first reveal that parameters of GABA neurotransmission are modified by postnatal development, implying that synaptic adjustments are required for an appropriate maturation of the GABAergic system in the SCN.


2020 ◽  
Author(s):  
Jürgen Graf ◽  
Chuanqiang Zhang ◽  
Stephan Lawrence Marguet ◽  
Tanja Herrmann ◽  
Tom Flossmann ◽  
...  

AbstractNKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in-vitro excitatory GABA actions and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics and behavioral performance are subtle. Our data reveal a neural network function of depolarizing GABA in the hippocampus in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


2020 ◽  
Vol 219 (2) ◽  
Author(s):  
Min Lee ◽  
Yen-Chen Liu ◽  
Chen Chen ◽  
Chi-Huan Lu ◽  
Shao-Tzu Lu ◽  
...  

Neuronal GABAergic responses switch from excitatory to inhibitory at an early postnatal period in rodents. The timing of this switch is controlled by intracellular Cl− concentrations, but factors determining local levels of cation-chloride cotransporters remain elusive. Here, we report that local abundance of the chloride importer NKCC1 and timely emergence of GABAergic inhibition are modulated by proteasome distribution, which is mediated through interactions of proteasomes with the adaptor Ecm29 and the axon initial segment (AIS) scaffold protein ankyrin G. Mechanistically, both the Ecm29 N-terminal domain and an intact AIS structure are required for transport and tethering of proteasomes in the AIS region. In mice, Ecm29 knockout (KO) in neurons increases the density of NKCC1 protein in the AIS region, a change that positively correlates with a delay in the GABAergic response switch. Phenotypically, Ecm29 KO mice showed increased firing frequency of action potentials at early postnatal ages and were hypersusceptible to chemically induced convulsive seizures. Finally, Ecm29 KO neurons exhibited accelerated AIS developmental positioning, reflecting a perturbed AIS morphological plastic response to hyperexcitability arising from proteasome inhibition, a phenotype rescued by ectopic Ecm29 expression or NKCC1 inhibition. Together, our findings support the idea that neuronal maturation requires regulation of proteasomal distribution controlled by Ecm29.


2019 ◽  
Vol 30 (8) ◽  
pp. 869-879 ◽  
Author(s):  
Tao Li ◽  
Zeyi Huang ◽  
Xianwen Wang ◽  
Ju Zou ◽  
Sijie Tan

Abstract Sevoflurane is a widely used inhalational anesthetic in pediatric surgeries, which is considered reasonably safe and reversible upon withdrawal. However, recent preclinical studies suggested that peri-neonatal sevoflurane exposure may cause developmental abnormalities in the brain. The present review aimed to present and discuss the accumulating experimental data regarding the undesirable effects of sevoflurane on brain development as revealed by the laboratory studies. First, we summarized the long-lasting side effects of neonatal sevoflurane exposure on cognitive functions. Subsequently, we presented the structural changes, namely, neuroapoptosis, neurogenesis and synaptogenesis, following sevoflurane exposure in the immature brain. Finally, we also discussed the potential mechanisms underlying subsequent cognitive impairments later in life, which are induced by neonatal sevoflurane exposure and pointed out potential strategies for mitigating sevoflurane-induced long-term cognitive impairments. The type A gamma-amino butyric acid (GABAA) receptor, the main targets of sevoflurane, is excitatory rather than inhibitory in the immature neurons. The excitatory effects of the GABAA receptors have been linked to increased neuroapoptosis, elevated serum corticosterone levels and epigenetic modifications following neonatal sevoflurane exposure in rodents, which might contribute to sevoflurane-induced long-term cognitive abnormalities. We proposed that the excitatory GABAA receptor-mediated HPA axis activity might be a novel mechanism underlying sevoflurane-induced long-term cognitive impairments. More studies are needed to investigate the effectiveness and mechanisms by targeting the excitatory GABAA receptor as a prevention strategy to alleviate cognitive deficits induced by neonatal sevoflurane exposure in future.


2019 ◽  
Author(s):  
Olivier Dubanet ◽  
Arnaldo Ferreira Gomes Da Silva ◽  
Andreas Frick ◽  
Hajime Hirase ◽  
Anna Beyeler ◽  
...  

AbstractSeveral studies suggest a contribution of reversed, excitatory GABA to epileptogenesis. But GABAergic transmission critically depends on the very dynamic combination of membrane potential, conductance and occurrence of other synaptic inputs. Taking this complexity into account implies measuring the postsynaptic responses to spontaneously occurring GABAergic events, in vivo, without interfering with neuronal [Cl-]i. Because of technical difficulties, this has not been achieved yet. We have overcome this challenge by combining in vivo extracellular detection of both optogenetically-evoked and spontaneously occurring unitary inhibitory postsynaptic field-potentials (fIPSPs), with the silicon probe recording of neuronal firing activity, with single cell resolution. We report that isolated acute seizures induced a global reversal of the polarity of CA3 hippocampal GABAergic transmission, shifting from inhibitory to excitatory for a duration of several tens of seconds before returning to normal polarity. Nevertheless we observed this reversed polarity only in the post-ictal period during which neurons (including GABAergic interneurons) were silent. Perisomatic inhibition was also affected during the course of epileptogenesis in the Kainate model of chronic epilepsy. One week after Kainate injection, the majority of pyramidal cells escaped inhibitory control by perisomatic GABAergic events. Besides, we did not observe a reversed polarity of fIPSPs, but fIPSPs provided time-locked excitation to a minor subset of CA3 pyramidal neurons. Beside methodological interests, our results suggest that subtle alterations in the regulation of [Cl-]i and perisomatic GABAergic transmission already operate in the hippocampal circuit during the latent period that precedes the establishment of chronic epilepsy.


2018 ◽  
Author(s):  
Marie Goutierre ◽  
Sana Al Awabdh ◽  
Emeline François ◽  
Daniel Gomez-Dominguez ◽  
Theano Irinopoulou ◽  
...  

AbstractThe K+/Cl− co-transporter KCC2 (SLC12A5) regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in several neurological and psychiatric disorders including epilepsy, neuropathic pain and autism spectrum disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents was depolarized in KCC2 knockdown neurons, this shift was fully compensated by depolarization of their resting membrane potential. This effect was due to downregulation of Task-3 leak potassium channels that we show require KCC2 for membrane trafficking. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis that could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that concur to perturb network activity, thus offering novel targets for therapeutic intervention.


2018 ◽  
Vol 115 (7) ◽  
pp. E1618-E1626 ◽  
Author(s):  
Zahra Dargaei ◽  
Jee Yoon Bang ◽  
Vivek Mahadevan ◽  
C. Sahara Khademullah ◽  
Simon Bedard ◽  
...  

Huntington’s disease (HD) is classically characterized as a movement disorder, however cognitive impairments precede the motor symptoms by ∼15 y. Based on proteomic and bioinformatic data linking the Huntingtin protein (Htt) and KCC2, which is required for hyperpolarizing GABAergic inhibition, and the important role of inhibition in learning and memory, we hypothesized that aberrant KCC2 function contributes to the hippocampal-associated learning and memory deficits in HD. We discovered that Htt and KCC2 interact in the hippocampi of wild-type and R6/2-HD mice, with a decrease in KCC2 expression in the hippocampus of R6/2 and YAC128 mice. The reduced expression of the Cl−-extruding cotransporter KCC2 is accompanied by an increase in the Cl−-importing cotransporter NKCC1, which together result in excitatory GABA in the hippocampi of HD mice. NKCC1 inhibition by the FDA-approved NKCC1 inhibitor bumetanide abolished the excitatory action of GABA and rescued the performance of R6/2 mice on hippocampal-associated behavioral tests.


2017 ◽  
Vol 41 (S1) ◽  
pp. S347-S348
Author(s):  
P. Menshchikov ◽  
T. Akhadov ◽  
N. Semenova

IntroductionSome previous findings indicate participation disturbance of balance between excitatory (GABA) and inhibitory (Glu) neurotransmitters in pathogenesis of schizophrenia. The aim of this study was to evaluate GABA and GLX levels in the brain of medicated UHR subjects.ObjectivesTwenty-one (18–25 years, mean = 19.4, SD = 3.5) right-handed medicated UHR men and 26 (18–25 years, mean = 19.8, SD = 2.2) mentally healthy volunteers participated in this study. The patients were included in the UHR group in accordance with criteria of prodromal states.Methods1H MRS (MEGA-PRESS pulse sequence [Mescher, NMR Biomed 1998;11:266]) was used for GABA and GLX detection. Volumes of interest in size of 30 × 30 × 30 mm were placed in the left and right frontal lobes in the areas of the anterior cingulate cortex (ACC) (Fig. 1).ResultsThe main effects on the GABA/Cr (t[45] = 4.17, P < 0.01) (Fig. 2A) and GABA/GLX (t[45] = 2.84, P < 0.01) (Fig. 2B), were found in the left ACC (t[45] = 4.17, P < 0.01), with the patients having lower GABA/Cr and GABA/GLX ratios as compared to the control group. Also significant negative correlation (r = −0.49, P = 0.04) between GABA/Cr in the right ACC and the current daily dosage of antipsychotic medication in CPZ-Eq was found (Fig. 3).ConclusionThis study reveals for the first time a significant reduction of (GABA) (25%) and GABA/GLX ratio (20%) in left AC of UHR subjects. According to (de la Fuente-Sandoval, Int J Neuropsychopharmacol 2015;19[3]) and association of (GABA) with daily dosage of medication found, this reduction may be caused by the antipsichotic treatment.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Neuron ◽  
2016 ◽  
Vol 92 (2) ◽  
pp. 493-504 ◽  
Author(s):  
Alexey Ostroumov ◽  
Alyse M. Thomas ◽  
Blake A. Kimmey ◽  
Jordan S. Karsch ◽  
William M. Doyon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document