scholarly journals WNK3 and WNK4 exhibit opposite sensitivity with respect to cell volume and intracellular chloride concentration

2020 ◽  
Vol 319 (2) ◽  
pp. C371-C380
Author(s):  
Diana Pacheco-Alvarez ◽  
Diego Luis Carrillo-Pérez ◽  
Adriana Mercado ◽  
Karla Leyva-Ríos ◽  
Erika Moreno ◽  
...  

Cation-coupled chloride cotransporters (CCC) play a role in modulating intracellular chloride concentration ([Cl−]i) and cell volume. Cell shrinkage and cell swelling are accompanied by an increase or decrease in [Cl−]i, respectively. Cell shrinkage and a decrease in [Cl−]i increase the activity of NKCCs (Na-K-Cl cotransporters: NKCC1, NKCC2, and Na-Cl) and inhibit the activity of KCCs (K-Cl cotransporters: KCC1 to KCC4), wheras cell swelling and an increase in [Cl−]i activate KCCs and inhibit NKCCs; thus, it is unlikely that the same kinase is responsible for both effects. WNK1 and WNK4 are chloride-sensitive kinases that modulate the activity of CCC in response to changes in [Cl−]i. Here, we showed that WNK3, another member of the serine-threonine kinase WNK family with known effects on CCC, is not sensitive to [Cl−]i but can be regulated by changes in extracellular tonicity. In contrast, WNK4 is highly sensitive to [Cl−]i but is not regulated by changes in cell volume. The activity of WNK3 toward NaCl cotransporter is not affected by eliminating the chloride-binding site of WNK3, further confirming that the kinase is not sensitive to chloride. Chimeric WNK3/WNK4 proteins were produced, and analysis of the chimeras suggests that sequences within the WNK’s carboxy-terminal end may modulate the chloride affinity. We propose that WNK3 is a cell volume-sensitive kinase that translates changes in cell volume into phosphorylation of CCC.

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Diana Pacheco‐Alvarez ◽  
Diego Luis Carrillo‐Pérez ◽  
Adriana Mercado ◽  
Karla Leyva‐Ríos ◽  
Erika Moreno ◽  
...  

1994 ◽  
Vol 267 (3) ◽  
pp. E343-E355 ◽  
Author(s):  
D. Haussinger ◽  
F. Lang ◽  
W. Gerok

Cellular hydration can change within minutes under the influence of hormones, nutrients, and oxidative stress. Such short-term modulation of cell volume within a narrow range acts per se as a potent signal which modifies cellular metabolism and gene expression. It appears that cell swelling and cell shrinkage lead to certain opposite patterns of cellular metabolic function. Apparently, hormones and amino acids can trigger those patterns simply by altering cell volume. Thus alterations of cellular hydration may represent another important mechanism for metabolic control and act as another second or third messenger linking cell function to hormonal and environmental alterations.


2022 ◽  
pp. 074873042110597
Author(s):  
Nathan J. Klett ◽  
Olga Cravetchi ◽  
Charles N. Allen

Both inhibitory and excitatory GABA transmission exist in the mature suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. Whether GABA is inhibitory or excitatory depends on the intracellular chloride concentration ([Cl−]i). Here, using the genetically encoded ratiometric probe Cl-Sensor, we investigated [Cl−]i in AVP and VIP-expressing SCN neurons for several days in culture. The chloride ratio (RCl) demonstrated circadian rhythmicity in AVP + neurons and VIP + neurons, but was not detected in GFAP + astrocytes. RCl peaked between ZT 7 and ZT 8 in both AVP + and VIP + neurons. RCl rhythmicity was not dependent on the activity of several transmembrane chloride carriers, action potential generation, or the L-type voltage-gated calcium channels, but was sensitive to GABA antagonists. We conclude that [Cl−]i is under circadian regulation in both AVP + and VIP + neurons.


1992 ◽  
Vol 263 (3) ◽  
pp. C584-C589 ◽  
Author(s):  
P. A. Negulescu ◽  
B. Munck ◽  
T. E. Machen

The effects of osmotically induced changes in cell volume on cytoplasmic free Ca (Cai) were studied in parietal cells from intact rabbit gastric glands using digital image processing of fura-2 fluorescence. In resting unstimulated cells, Cai was unaffected by either cell swelling or shrinking when osmolarity was varied between 200 and 400 mosM (isotonicity 290 mosM). However, when cells were swelled in a 165 mosM solution (55% tonicity), a biphasic Ca increased was observed. On average, Cai increased transiently from 80 to 218 nM before stabilizing at approximately 140 nM. The peak was due to release from intracellular pools because it was present in Ca-free solutions while the sustained elevation was dependent on external Ca. In carbachol-stimulated cells, Ca influx was most sensitive to cell shrinkage. For example, addition of 25 mM sucrose (108% tonicity) caused a 30% decrease in the sustained carbachol-stimulated Cai increase (plateau). In contrast, carbachol-stimulated cells were relatively insensitive to cell swelling, with a 30% decrease in tonicity causing only a 15% increase in the plateau. However, as in the unstimulated cells, extreme (55% tonicity) swelling caused additional increases in Cai levels. The carbachol-dependent effects of changes in cell volume on Cai could be mimicked by treating cells with thapsigargin, an inhibitor of Ca pumps of intracellular membranes that also has been shown to stimulate Ca entry. Thus, although extreme swelling conditions (55% tonicity) could elicit Cai increases in either the presence or absence of agonist, agonist was required to observe Cai decreases due to cell shrinkage.(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 112 (29) ◽  
pp. E3920-E3929 ◽  
Author(s):  
Jihwan Myung ◽  
Sungho Hong ◽  
Daniel DeWoskin ◽  
Erik De Schutter ◽  
Daniel B. Forger ◽  
...  

The mammalian suprachiasmatic nucleus (SCN) forms not only the master circadian clock but also a seasonal clock. This neural network of ∼10,000 circadian oscillators encodes season-dependent day-length changes through a largely unknown mechanism. We show that region-intrinsic changes in the SCN fine-tune the degree of network synchrony and reorganize the phase relationship among circadian oscillators to represent day length. We measure oscillations of the clock gene Bmal1, at single-cell and regional levels in cultured SCN explanted from animals raised under short or long days. Coupling estimation using the Kuramoto framework reveals that the network has couplings that can be both phase-attractive (synchronizing) and -repulsive (desynchronizing). The phase gap between the dorsal and ventral regions increases and the overall period of the SCN shortens with longer day length. We find that one of the underlying physiological mechanisms is the modulation of the intracellular chloride concentration, which can adjust the strength and polarity of the ionotropic GABAA-mediated synaptic input. We show that increasing day-length changes the pattern of chloride transporter expression, yielding more excitatory GABA synaptic input, and that blocking GABAA signaling or the chloride transporter disrupts the unique phase and period organization induced by the day length. We test the consequences of this tunable GABA coupling in the context of excitation–inhibition balance through detailed realistic modeling. These results indicate that the network encoding of seasonal time is controlled by modulation of intracellular chloride, which determines the phase relationship among and period difference between the dorsal and ventral SCN.


2012 ◽  
Vol 464 (3) ◽  
pp. 317-330 ◽  
Author(s):  
Silvia Cruz-Rangel ◽  
Gerardo Gamba ◽  
Gerardo Ramos-Mandujano ◽  
Herminia Pasantes-Morales

2001 ◽  
Vol 85 (6) ◽  
pp. 2381-2387
Author(s):  
Valeri Lopantsev ◽  
Philip A. Schwartzkroin

Changes in intracellular chloride concentration, mediated by chloride influx through GABAA receptor–gated channels, may modulate GABAB receptor–mediated inhibitory postsynaptic potentials (GABAB IPSPs) via unknown mechanisms. Recording from CA3 pyramidal cells in hippocampal slices, we investigated the impact of chloride influx during GABAA receptor–mediated IPSPs (GABAA IPSPs) on the properties of GABAB IPSPs. At relatively positive membrane potentials (near −55 mV), mossy fiber–evoked GABAB IPSPs were reduced (compared with their magnitude at −60 mV) when preceded by GABAAreceptor–mediated chloride influx. This effect was not associated with a correlated reduction in membrane permeability during the GABAB IPSP. The mossy fiber–evoked GABAB IPSP showed a positive shift in reversal potential (from −99 to −93 mV) when it was preceded by a GABAA IPSP evoked at cell membrane potential of −55 mV as compared with −60 mV. Similarly, when intracellular chloride concentration was raised via chloride diffusion from an intracellular microelectrode, there was a reduction of the pharmacologically isolated monosynaptic GABABIPSP and a concurrent shift of GABAB IPSP reversal potential from −98 to −90 mV. We conclude that in hippocampal pyramidal cells, in which “resting” membrane potential is near action potential threshold, chloride influx via GABAA IPSPs shifts the reversal potential of subsequent GABAB receptor–mediated postsynaptic responses in a positive direction and reduces their magnitude.


1992 ◽  
Vol 288 (2) ◽  
pp. 681-689 ◽  
Author(s):  
D Häussinger ◽  
C Hallbrucker ◽  
N Saha ◽  
F Lang ◽  
W Gerok

The interaction between cell volume and taurocholate excretion into bile was studied in isolated perfused rat liver. Cell swelling due to hypo-osmotic exposure, addition of amino acids or insulin stimulated taurocholate excretion into bile and bile flow, whereas hyperosmotic cell shrinkage inhibited these. These effects were explained by changes in Vmax of taurocholate excretion into bile: Vmax. increased from about 300 to 700 nmol/min per g after cell swelling by 12-15% caused by either hypo-osmotic exposure or addition of amino acids under normo-osmotic conditions. Steady-state taurocholate excretion into bile was not affected when the influent K+ concentration was increased from 6 to 46 mM or decreased to 1 mM with iso-osmoticity being maintained by corresponding changes in the influent Na+ concentration. Replacement of 40 mM-NaCl by 80 mM-sucrose decreased taurocholate excretion into bile by about 70%; subsequent hypo-osmotic exposure by omission of sucrose increased taurocholate excretion to 160%. Only minor, statistically insignificant, effects of aniso-osmotic cell volume changes on the appearance of bolus-injected horseradish peroxidase in bile were observed. Taurocholate (400 microM) exhibited a cholestatic effect during hyperosmotic cell shrinkage, but not during hypo-osmotic cell swelling. Both taurocholate and tauroursodeoxycholate increased liver cell volume. Tauroursodeoxycholate stimulated taurocholate (100 microM) excretion into bile. This stimulatory effect was strongly dependent on the extent of tauroursodeoxycholate-induced cell swelling. During continuous infusion of taurocholate (100 microM) further addition of tauroursodeoxycholate at concentrations of 20, 50 and 100 microM increased cell volume by 10, 8 and 2% respectively, in parallel with a stimulation of taurocholate excretion into bile by 29, 27 and 9% respectively. There was a close relationship between the extent of cell volume changes and taurocholate excretion into bile, regardless of whether cell volume was modified by tauroursodeoxycholate, amino acids or aniso-osmotic exposure. The data suggest that: (i) liver cell volume is one important factor determining bile flow and biliary taurocholate excretion; (ii) swelling-induced stimulation of taurocholate excretion into bile is probably not explained by alterations of the membrane potential; (iii) bile acids modulate liver cell volume; (iv) taurocholate-induced cholestasis may depend on cell volume; (v) stimulation of taurocholate excretion into bile by tauroursodeoxycholate can largely be explained by tauroursodeoxycholate-induced cell swelling.


2006 ◽  
Vol 95 (4) ◽  
pp. 2404-2416 ◽  
Author(s):  
Ling-Li Zhang ◽  
Hemal R. Pathak ◽  
Douglas A. Coulter ◽  
Michael A. Freed ◽  
Noga Vardi

GABA and glycine provide excitatory action during early development: they depolarize neurons and increase intracellular calcium concentration. As neurons mature, GABA and glycine become inhibitory. This switch from excitation to inhibition is thought to result from a shift of intracellular chloride concentration ([Cl−]i) from high to low, but in retina, measurements of [Cl−]i or chloride equilibrium potential ( ECl) during development have not been made. Using the developing mouse retina, we systematically measured [Cl−]i in parallel with GABA's actions on calcium and chloride. In ganglion and amacrine cells, fura-2 imaging showed that before postnatal day (P) 6, exogenous GABA, acting via ionotropic GABA receptors, evoked calcium rise, which persisted in HCO3−- free buffer but was blocked with 0 extracellular calcium. After P6, GABA switched to inhibiting spontaneous calcium transients. Concomitant with this switch we observed the following: 6-methoxy- N-ethylquinolinium iodide (MEQ) chloride imaging showed that GABA caused an efflux of chloride before P6 and an influx afterward; gramicidin-perforated-patch recordings showed that the reversal potential for GABA decreased from −45 mV, near threshold for voltage-activated calcium channel, to −60 mV, near resting potential; MEQ imaging showed that [Cl−]i shifted steeply around P6 from 29 to 14 mM, corresponding to a decline of ECl from −39 to −58 mV. We also show that GABAergic amacrine cells became stratified by P4, potentially allowing GABA's excitatory action to shape circuit connectivity. Our results support the hypothesis that a shift from high [Cl−]i to low causes GABA to switch from excitatory to inhibitory.


Sign in / Sign up

Export Citation Format

Share Document