genome distance
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 5)

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1532
Author(s):  
Chao Wang ◽  
Yuan Zeng ◽  
Mengyu Wei ◽  
Lanqing Cui ◽  
Yuqin Song ◽  
...  

We describe the genomic and phenotypic characteristics of a novel member of Streptococcus with multidrug resistance (MDR) isolated from hospital samples. Strains SP218 and SP219 were identified as a novel Streptococcus, S. sputorum, using whole-genome sequencing and biochemical tests. Average nucleotide identity values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 94.3% and 93.3%, respectively. Genome-to-genome distance values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 56.70% (54–59.5%) and 56.40% (52.8–59.9%), respectively. The biochemical test results distinguished these strains from S. pseudopneumoniae and S. pneumoniae, particularly hydrolysis of equine urate and utilization of ribose to produce acid. These isolates were resistant to six major classes of antibiotics, which correlated with horizontal gene transfer and mutation. Notably, strain SP219 exhibited cytotoxicity against human lung epithelial cell line A549. Our results indicate the pathogenic potential of S. sputorum, and provide valuable insights into mitis group of streptococci.


2021 ◽  
Author(s):  
Gustavo Pitta Reis de Azevedo ◽  
Hannah K. Mattsson ◽  
Luciane Tonon ◽  
Tatiane Arruda ◽  
Vinicius Salazar ◽  
...  

Abstract Description of a Gram-negative, motile, circular-shaped bacterial strain, designated A621T obtained from the skin of the pufferfish Canthigaster figuereidoi (Tetraodontidae Family), collected in Arraial do Cabo, Brazil. Optimum growth occurs at 20 - 28 °C in the presence of 3% NaCl. The Genome sequence of the novel isolate consisted of 4.224 Mb, 4,431 coding genes and G+C content of 44.5%. Genomic taxonomy analysis based on Average Amino Acid (AAI), Genome-to-Genome-Distance (GGDH) and phylogenetic reconstruction placed A621T (= CBAS 741T) into a new species of the genus Vibrio (Vibrio gaelis sp. nov.). The genome of the novel species contains 4 gene clusters (~56.17 Kbp in total) coding for different types of bioactive compounds that hint to several possible ecological roles in the pufferfish host.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
Won Joon Jung ◽  
Sang Wha Kim ◽  
Sib Sankar Giri ◽  
Hyoun Joong Kim ◽  
Sang Guen Kim ◽  
...  

This study presents a novel Janthinobacterium strain, SNU WT3, isolated from the kidney of rainbow trout. A phylogenetic study using 16S rRNA sequences indicated that the strain is closely related to Janthinobacterium svalbardensis JA-1T. However, biochemical analysis found differences in D-xylose adonitol, N-acetylglucosamine, arbutin, and cellobiose. As for genome-to-genome distance and average nucleotide identity values calculated between strain SNU WT3 and other related strains such as J. lividum EIF1, J. svalbardensis PAMC 27463, and J. agaricidamnosum BHSEK were all below the cutoff value between species. DNA-DNA hybridization between strain SNU WT3 and other close relatives indicated the results of J. lividum DSM 1522T (47.11%) and J. svalbardensis JA-1T (38.88%) individually. The major fatty acid compositions of strain SNU WT3 were cylco-C17:0 (41.45%), C16:0 (33.86%) and C12:0 (5.87%). The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, and diphosphatidylglycerol. The quinone system was composed mainly of ubiquinone Q-8. The genome of strain SNU WT3 consists of 6,314,370 bp with a G + C content of 62.35%. Here, we describe a novel species of the genus Janthinobacterium, and the name Janthinobacterium tructae has been proposed with SNU WT3T (=KCTC 72518 = JCM 33613) as the type strain.


2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Won Joon Jung ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Guen Kim ◽  
Sang Wha Kim ◽  
...  

A novel Citrobacter species was isolated from the kidney of diseased rainbow trout (Oncorhynchus mykiss) reared on a trout farm. Biochemical characterization and phylogenetic analysis were performed for bacterial identification. Sequencing of the 16S rRNA gene and five housekeeping genes indicated that the strain belongs to the Citrobacter genus. However, multilocus sequence analysis, a comparison of average nucleotide identity, and genome-to-genome distance values revealed that strain SNU WT2 is distinct and forms a separate clade from other Citrobacter species. Additionally, the phenotype characteristics of the strain differed from those of other Citrobacter species. Quinone analysis indicated that the predominant isoprenoid quinone is Q-10. Furthermore, strain virulence was determined by a rainbow trout challenge trial, and the strain showed resistance to diverse antibiotics including β-lactams, quinolone, and aminoglycosides. The complete genome of strain SNU WT2 is 4,840,504 bp with a DNA G + C content of 51.94% and 106,068-bp plasmid. Genome analysis revealed that the strain carries virulence factors on its chromosome and antibiotic resistance genes on its plasmid. This strain represents a novel species in the genus Citrobacter for which the name C. tructae has been proposed, with SNU WT2 (=KCTC 72517 = JCM 33612) as the type strain.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9151 ◽  
Author(s):  
Debra A. Brock ◽  
Suegene Noh ◽  
Alicia N.M. Hubert ◽  
Tamara S. Haselkorn ◽  
Susanne DiSalvo ◽  
...  

Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum. The new species P. agricolaris sp. nov., P. hayleyella sp. nov., and P. bonniea sp. nov. are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum. We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship. All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.


2020 ◽  
Vol 70 (3) ◽  
pp. 1522-1527 ◽  
Author(s):  
Joana Rocha ◽  
João Botelho ◽  
Magdalena Ksiezarek ◽  
Svetlana Ugarcina Perovic ◽  
Miguel Machado ◽  
...  

One Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, and coccobacilli-shaped strain, designated c10Ua161MT, was isolated from a urine sample from a reproductive-age healthy woman. Comparative 16S rRNA gene sequence analysis indicated that strain c10Ua161MT belonged to the genus Lactobacillus . Phylogenetic analysis based on pheS and rpoA gene sequences strongly supported a clade encompassing strains c10Ua161MT and eight other strains from public databases, distinct from currently recognized species of the genus Lactobacillus. In silico Average Nucleotide Identity (ANI) and Genome-to-Genome Distance Calculator (GGDC), showed 87.9 and 34.3 % identity to the closest relative Lactobacillus jensenii , respectively. The major fatty acids of strain c10Ua161MT were C18 : 1ω9c (65.0%), C16 : 0 (17.8%), and summed feature 8 (10.2 %; comprising C18 : 1ω7c, and/or C18 : 1ω6c). The DNA G+C content of the strains is 34.2 mol%. On the basis of data presented here, strain c10Ua161MT represents a novel species of the genus Lactobacillus , for which the name Lactobacillus mulieris sp. nov. is proposed. The type strain is c10Ua161MT (=CECT 9755T=DSM 108704T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1528-1540 ◽  
Author(s):  
Sonja Lick ◽  
Lothar Kröckel ◽  
Daniel Wibberg ◽  
Annika Winkler ◽  
Jochen Blom ◽  
...  

During investigations of spoilage-associated meat microbiota, Pseudomonas isolates were found in two different laboratories showing highest similarities to Pseudomonas lactis DSM 29167T, Pseudomonas paralactis DSM 29164T and Pseudomonas azotoformans DSM 18862T based on 16S rRNA gene sequence comparisons. Phylogenetic analysis of the complete rpoB gene sequences of isolates B4-1T and SpeckC indicated a separate branch with 99.0 and 99.1 % identity, respectively, to their closest relative ( P. lactis DSM 29167T). Further phenotypic and chemotaxonomic characterizations, as well as average nucleotide identity (ANIb) values obtained from the draft genomes, revealed that these isolates could be considered as representing a novel species, with ANIb values of around 94 and 90 % with their closest relatives P. lactis and P. paralactis . Other related species showed ANIb values below 90 %, including Pseudomonas libanensis DSM 17149T, Pseudomonas synxantha DSM 18928T, Pseudomonas orientalis DSM 17489T, Pseudomonas veronii DSM 11331T and P. azotoformans DSM 18862T. Genome-to-genome distance calculations between B4-1T and its closest relative, P. lactis DSM 29167T, showed 62.6 % relatedness. The G+C contents of B4-1T and SpeckC were 59.8 and 59.9 mol%, respectively. The major cellular lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; the major quinone was Q9. Based on these data, the new species Pseudomonas carnis sp. nov. is proposed, the type strain is B4-1T (=DSM 107652T=LMG 30892T); a second strain is SpeckC (=DSM 107651=LMG 30893).


GigaScience ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Bremges ◽  
Adrian Fritz ◽  
Alice C McHardy

Abstract Background The number of microbial genome sequences is increasing exponentially, especially thanks to recent advances in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to genomes is key and often a prerequisite for downstream analyses. Findings We introduce CAMITAX, a scalable and reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and metagenomes. CAMITAX combines genome distance–, 16S ribosomal RNA gene–, and gene homology–based taxonomic assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers and thus combines ease of installation and use with computational reproducibility. We evaluated the method on several hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and we show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks. Conclusions While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI) initiative, it evolved into a comprehensive software package to reliably assign taxon labels to microbial genomes. CAMITAX is available under Apache License 2.0 at https://github.com/CAMI-challenge/CAMITAX.


Gene Reports ◽  
2019 ◽  
Vol 17 ◽  
pp. 100508
Author(s):  
Dmitriy Romanov ◽  
Elena Butenko ◽  
Georgy Bakhtadze ◽  
Tatiana Shkurat

Sign in / Sign up

Export Citation Format

Share Document