anodic zone
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 1)

CORROSION ◽  
10.5006/3774 ◽  
2021 ◽  
Author(s):  
Zhuwu Zhang ◽  
Jiuhong Zhang ◽  
Jinchang Wang ◽  
Y. Frank Cheng

Local corrosion at a defect on a pipeline was assessed using both 2-dimensional (2D) and 3D finite element (FE) models under mechano-electrochemical (M-E) interaction. While the M-E interaction increases corrosion activity at the defect, the assessment of M-E interaction would have different results using 2D and 3D models. Compared with the 3D model, the 2D model produces a greater local stress, a higher local plastic strain, a more negative corrosion potential and a higher anodic current density at the defect, and thus, a lower threshold internal pressure causing local yielding. The 3D model is more conservative for corrosion rate prediction of corroded pipelines. A new concept, rAZ (the ratio of the anodic zone length to defect length in the 2D model, or the ratio of the anodic zone area to the defect area in the 3D model), is proposed to define growth mode of the corrosion defect. There is a smaller rAZ produced in 2D model. At specific internal pressures, the 2D model predicts an ellipsoidal defect center area experiencing accelerated corrosion and potentially resulting in pipeline leaking.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 684 ◽  
Author(s):  
Zhiwei Chen ◽  
Wei Zhang ◽  
Yi Zhan ◽  
Bing Lei ◽  
Tianying Sun ◽  
...  

Water-line corrosion is a highly concentrated type of localized corrosion. The conventional single electrode method is limited in its ability to obtain the kinetic information of the corrosion occurrence and development processes. Herein, the coating deterioration and underlying metal corrosion processes in water-line area were studied by a small wire beam electrode to monitor the current density distribution. The distance between each electrode was very small (interval: 0.3 mm), thus facilitating it to approach the practical metal component with a continuous surface. The results showed that cathodic and anodic sites tended to be weak points of the coating at the initial stage. With the continuous degradation of the coating, the cathodic zone tended to occur in the above the anodic zone due to the effect of differential aeration cells (DACs). Subsequently, the cathodic zone expanded to the waterline and the polarity reversed to the anodic zone, causing the coating to peel and blister continuously from the bottom up. When the cathodic zone extended to the gas phase area above the water line, this area became the strongest cathodic zone under the action of the thin liquid film, thus significantly accelerating the corrosion of the base metal at the bottom. The present study aims to achieve an in-depth understanding of coating deterioration and underlying metal corrosion processes in the water-line area, providing a new means of directly visualizing the role of DACs played in water line corrosion.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xianfa Kong ◽  
Junqing Guo ◽  
Tianhe Kang

The electrochemical method can strengthen gas desorption and seepage from coal. The study on change of the pore-fracture structure of coal after electrochemical modification can help to reveal the mechanism. Anthracite was modified by the electrochemical method using our own self-developed experiment apparatus. The pore-fracture structure of modified samples was measured by micro-CT. Combined with the Matlab software, its characteristics such as pore number, porosity, and average pore diameter were analyzed. The results show that (1) the number of fractures in modified coal samples increases. The shape of new fractures in samples in the anodic and cathodic zones was irregular voids and striola, respectively. The effect of electrochemical treatment on the section of samples close to the electrode is relatively obvious. (2) With increasing pore size, the number of pores in samples changes according to negative exponential rules. After electrochemical modification, the porosity of modified samples in the anodic zone increases from 11.88% to 31.65%, and the porosity of modified samples in the cathodic zone increases from 12.13% to 36.71%. (3) The main reason for the increase in the number of pores of coal samples in the anodic and cathodic zones is the treatment of electrolytic dissolution of minerals and electrophoretic migration of charged particles, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodríguez-Díaz ◽  
E. Porcayo-Palafox ◽  
L. Martinez-Gomez

The performance of different Cu-based coins in artificial sweat was evaluated. The electrochemical behavior of the coins was determined by potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. Regardless of the chemical composition of the Cu-based coins, they showed similar polarization curves; particularly, the observed similarity in the anodic zone suggests that the corrosion mechanism is the same in all cases. The presence of Ni and Zn does not appreciably affect the corrosion resistance of Cu. However, the presence of both elements affects the corrosion resistance of Cu. Electrochemical impedance spectroscopy measurements showed the presence of three time constants with very similar characteristics, again indicating that the main corrosion mechanism is the same in all cases. Equivalent circuits confirmed that the corrosion performance of the Ni-Zn-Cu coins depends on the Zn/Ni ratio, such that decreasing this value decreases the corrosion resistance of the alloy. In general, nickel has a detrimental effect due to the formation of highly soluble Ni-based corrosion products.


2009 ◽  
Vol 60 (2) ◽  
pp. 347-355 ◽  
Author(s):  
V. Fedorovich ◽  
S. D. Varfolomeev ◽  
A. Sizov ◽  
I. Goryanin

A plug flow multi-electrode bioelectrochemical reactor for wastewater treatment and simultaneous generation of electricity has been developed and its efficiency investigated. It employs a horizontally located anodic zone in which the anodic electrodes comprise porous graphite plates coated with palladium. The aerated immersed cathodic electrodes contain iron(II) phthalocyanine as a catalyst. The parameters of the device were obtained using glycerol and acetate as fuels and anaerobic sludge as an inoculum. The maximal volumetric power and current densities obtained, relative to the total volume of the anodic zone, were: glycerol: 73±1 mA/L; 43±1 mW/L; acetate: 75±1 mA/L; 40±1 mW/L. It was shown that biotransformation of glycerol into volatile fatty acids does not depend on the presence of anodic electrodes in the reaction zone, while acetate degradation takes place only if the reaction zone contains anodic electrodes as a final electron acceptor.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
Fathi Habashi

In electrochemical leaching processes the solid must be an electric conductor, e.g., a metal, or a semiconductor, e.g., certain metal sulfides or oxides. Reaction takes place by the transfer of electrons at the solid surface and involves oxidation–reduction processes that take place simultaneously at two different locations not far from each other. At one location, electrons are picked up by a depolarizer, D, in solution, e.g., O2, H+, etc. (the cathodic zone) and at another location metal ions are released in solution (the anodic zone) where they react with reagent C. A single kinetic law derived theoretically is obeyed: Rate = k1k2A[D][C] / (k1[D] + k2[C]) where k1 and k2 are constants, and A is the total surface area of the dissolving solid.


1997 ◽  
Vol 54 (3) ◽  
pp. 128-132
Author(s):  
F. BROETTO ◽  
A.M. CASA ◽  
E. MALAVOLTA ◽  
C.R. LOPES

One of the uses of the technique of tissue culture for plant breeding is the identification of cell lines tolerant to salt stress.In order to study the biochemical mechanisms involved in the genetic expression to salt tolerance, callus from embryo axis of four bean cultivars (cv. IAC-carioca; cv. IAPAR-14; cv. JALO-EEP558; CV. BAT-93) were grown in Murashige & Skoog (1962) medium, supplemented with NaCl in the concentrations of 0, 20, 40, 60 and 80 mM. After 14 days callus were harvested and analyzed according to their isoenzymatic patterns and peroxidase activities. BAT and IAPAR cultivars showed two common activity zones in the anodic region, with only one specific enzymatic band to each one (the two fastest migration band); it is possible that the two middle anodic zones detected are products of the same enzymatic locus but from different alleles with different eletrophoretic mobilities. Cv. JALO showed two anodic activities in common with cvs IAC and IAPAR with an exclusive anodic zone of slower migration which showed the most intense activity of all cultivars analyzed. This cv. still showed a dimeric heterozygotic catodic zone in all treated samples. Probably this is the same zone which occurs in homozygosis with fixation of the slower allele for all cvs BAT and IAPAR submitted to all treatments. Cv. IAC showed two anodic bands in common with Cv. IAPAR and cv. JALO. It still showed a faster anodic band in common with cv. IAPAR and an exclusive anodic band of slower migration. It is interesting to say that for this cv. IAC resulting from cultivation in NaCl 20 mM did not show activity in the three slower anodic zones. Cv. IAC showed only one dimeric heterozygotic catodic zone in all treatments. This zone is probably composed by two different alleles from the same locus detected in cv. JALO. Samples from cv. IAC treated with 40 and 60 mM showed a more intense enzymatic activity in the catodic zone. Analyses of the peroxidase activity in the crude extract of the different bean cultivars analysed showed different reations to salt concentration in the cultivation procedures as well as a high increasing of peroxidase activity in cv. IAC and JALO.


Sign in / Sign up

Export Citation Format

Share Document