arrest cell cycle progression
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Open Biology ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 200200
Author(s):  
Eleanor Wendy Trotter ◽  
Iain Michael Hagan

Each approach used to synchronize cell cycle progression of human cell lines presents a unique set of challenges. Induction synchrony with agents that transiently block progression through key cell cycle stages are popular, but change stoichiometries of cell cycle regulators, invoke compensatory changes in growth rate and, for DNA replication inhibitors, damage DNA. The production, replacement or manipulation of a target molecule must be exceptionally rapid if the interpretation of phenotypes in the cycle under study is to remain independent of impacts upon progression through the preceding cycle. We show how these challenges are avoided by exploiting the ability of the Cdk4/6 inhibitors, palbociclib, ribociclib and abemaciclib to arrest cell cycle progression at the natural control point for cell cycle commitment: the restriction point. After previous work found no change in the coupling of growth and division during recovery from CDK4/6 inhibition, we find high degrees of synchrony in cell cycle progression. Although we validate CDK4/6 induction synchronization with hTERT-RPE-1, A549, THP1 and H1299, it is effective in other lines and avoids the DNA damage that accompanies synchronization by thymidine block/release. Competence to return to cycle after 72 h arrest enables out of cycle target induction/manipulation, without impacting upon preceding cycles.


2020 ◽  
Author(s):  
Eleanor Wendy Trotter ◽  
Iain Michael Hagan

AbstractEach approach used to synchronise cell cycle progression of human cell lines presents a unique set of challenges. Induction synchrony with agents that transiently block progression through key cell cycle stages are popular, but change stoichiometries of cell cycle regulators, invoke compensatory changes in growth rate and, for DNA replication inhibitors, damage DNA. The production, replacement, or manipulation of a target molecule must be exceptionally rapid if the interpretation of phenotypes in the cycle under study are to remain independent of impacts upon progression through the preceding cycle. We show how these challenges are avoided by exploiting the ability of the Cdk4/6 inhibitors, palbociclib, ribociclib and abemaciclib to arrest cell cycle progression at the natural control point for cell cycle commitment: the restriction point. After previous work found no change in the coupling of growth and division during recovery from CDK4/6 inhibition, we find high degrees of synchrony in cell cycle progression. Although we validate CDK4/6 induction synchronisation with hTERT-RPE-1, THP1 and H1299, it is effective in other lines and avoids the DNA damage that accompanies synchronisation by thymidine block/release. Competence to return to cycle after 72 hours arrest enables out of cycle target induction/manipulation, without impacting upon preceding cycles.


2005 ◽  
Vol 84 (12) ◽  
pp. 927-938 ◽  
Author(s):  
Baoqing Guo ◽  
Julia Romero ◽  
Byung-Ju Kim ◽  
Hoyun Lee

1999 ◽  
Vol 73 (1) ◽  
pp. 676-683 ◽  
Author(s):  
Mansuo Lu ◽  
Thomas Shenk

ABSTRACT Earlier studies have revealed that human cytomegalovirus rapidly inhibits the growth of fibroblasts, blocking cell cycle progression at multiple points, including the G1-to-S-phase transition. The present study demonstrates that the UL69 protein, a virus-encoded constituent of the virion, is able to arrest cell cycle progression when introduced into uninfected cells. Expression of the UL69 protein causes U2 OS cells and primary human fibroblasts to accumulate within the G1 compartment of the cell cycle, and serum fails to induce the progression of quiescent human fibroblasts into the S phase when the protein is present. Therefore, the UL69 protein is at least partially responsible for the cell cycle block that is instituted after infection of permissive cells with human cytomegalovirus.


1997 ◽  
Vol 17 (1) ◽  
pp. 10-17 ◽  
Author(s):  
L Wu ◽  
P Russell

In self-fertile strains of the fission yeast Schizosaccharomyces pombe, nitrogen starvation initiates a program of sexual development in which cells express mating pheromones and receptors, arrest cell cycle progression in G1, and conjugate. This process is dependent on Rum1, an inhibitor of the Cdc2-Cdc13 and Cdc2-Cig2 cyclin B kinases. The M-phase induction activity of Cdc2-Cdc13 is inhibited by Wee1 tyrosine kinase, which phosphorylates Cdc2 on tyrosine-15. We report here that Wee1 activity is also important for mating. This discovery arose from studies of Nim1, a kinase which promotes mitosis by inhibiting Wee1. Nim1 was previously thought to have an important role in promoting mitosis during nitrogen starvation, but our studies revealed that Nim1 protein drops to an undetectable level within 15 min of nitrogen depletion. In contrast, Wee1 remains abundant, and tyrosine-phosphorylated Cdc2 is detected for at least 4 h after resuspension of cells in nitrogen-free medium. This suggested that maintenance of Wee1 activity may be important during the early stages of nitrogen starvation, a proposal confirmed by the observation that mating efficiency is reduced ca. fivefold in wee1- cells. Transcriptional induction of genes encoding mating factors and receptors is also delayed in wee1- cells. The wee1- mating defect is suppressed by deletion of cig2+, which encodes a B-type cyclin that promotes the onset of S and inhibits conjugation. These findings indicate that Wee1 and Rum1 act jointly to inhibit Cdc2 and promote sexual development in nitrogen-starved cells.


1996 ◽  
Vol 38 (1) ◽  
pp. 39-44 ◽  
Author(s):  
E. Augustin ◽  
Denys N Wheatley ◽  
Justin Lamb ◽  
J. Konopa

Sign in / Sign up

Export Citation Format

Share Document