Euphorbia lunulata extract acts on multidrug resistant gastric cancer cells to inhibit cell proliferation, migration and invasion, arrest cell cycle progression, and induce apoptosis

2018 ◽  
Vol 212 ◽  
pp. 8-17 ◽  
Author(s):  
Zhaoying Fu ◽  
Xiaodong Han ◽  
Juan Du ◽  
Xiaoxiao Han ◽  
Weipeng Liu ◽  
...  
2019 ◽  
Author(s):  
Yue Pan ◽  
Weixing Chen ◽  
Xin Yuan ◽  
Hongpeng Lu ◽  
Lei Xu ◽  
...  

Abstract Background: Recent studies have shown that microRNA-99a(miR-99a)plays a key role in the development of virious malignancies; however, its relationship with gastric cancer remains unclear. In this study, we investigated the functions and potential mechanisms of miR-99a in gastric cancer. Methods: Real-time qRT-PCR was used to assess the expression levels of miR-99a in gastric cancer tissue samples and cell lines compared to their matched adjacent normal tissues and a normal gastric mucosa epithelial cell line, respectively. SGC-7901 cells were transfected with miR-99a mimics and negative controls to determine the effects of miR-99a overexpression on cell proliferation, cell cycle transition, migration and invasion of gastric cancer cells in vitro . The role of miR-99a in endogenous c-Src expression in gastric cancer cells was also investigated by qRT-PCR and Western blotting. Results: Our results showed a significant increase in miR-99a expression in both gastric cancer tissues and cells compared to normal tissues and cells. Overexpression of miR-99a significantly promoted the cell proliferation, migration and invasion of gastric cancer cells compared to normal cells, with a concurrent increase in the S+G2 phases of the cell cycle. Further investigations found that miR-99a overexpression led to significant upregulation of endogenous c-Src. Conclusion: Taken together, our findings suggest that miR-99a may act as a tumour promoter in the pathogenesis of gastric cancer by indirectly modulating c-Src expression.


Planta Medica ◽  
1990 ◽  
Vol 56 (06) ◽  
pp. 677-678 ◽  
Author(s):  
Y. Matsukawa ◽  
M. Yoshida ◽  
T Sakai ◽  
N. Marui ◽  
K. Matsumoto ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hongbo Yu ◽  
Zheng Xu ◽  
Maomao Guo ◽  
Weiwan Wang ◽  
Weican Zhang ◽  
...  

Abstract Background Docetaxel resistance affects prognosis in advanced prostate cancer (PCa). The precise mechanisms remain unclear. Transcription factor Forkhead box M1 (FOXM1), which participates in cell proliferation and cell cycle progression, has been reported to affect the sensitivity of chemotherapy. This study explores the role of FOXM1 in PCa docetaxel resistance and its association with kinesin family member 20 A (KIF20A), which is known to promote therapeutic resistance in some cancers. Methods We monitored cell growth using MTT and colony formation assays, and cell apoptosis and cell cycle progression using flow cytometry. Wound-healing and transwell assays were used to detect cell invasion and migration. mRNA and protein expression were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. We monitored FOXM1 binding to the KIF20A promoter using a ChIP assay. Tumorigenicity in nude mice was used to assess in vivo tumorigenicity. Results FOXM1 knockdown induced cell apoptosis and G2/M cell cycle arrest, suppressing cell migration and invasion in docetaxel-resistant PCa cell lines (DU145-DR and VCaP-DR). Exogenous FOXM1 overexpression was found in their parental cells. Specific FOXM1 inhibitor thiostrepton significantly weakened docetaxel resistance in vitro and in vivo. We also found that FOXM1 and KIF20A exhibited consistent and highly correlated overexpression in PCa cells and tissues. FOXM1 also regulated KIF20A expression at the transcriptional level by acting directly on a Forkhead response element (FHRE) in its promoter. KIF20A overexpression could partially reverse the effect on cell proliferation, cell cycle proteins (cyclinA2, cyclinD1 and cyclinE1) and apoptosis protein (bcl-2 and PARP) of FOXM1 depletion. Conclusions Our findings indicate that highly expressed FOXM1 may help promote docetaxel resistance by inducing KIF20A expression, providing insight into novel chemotherapeutic strategies for combatting PCa docetaxel resistance.


2020 ◽  
Author(s):  
Hongbo Yu ◽  
Zheng Xu ◽  
Maomao Guo ◽  
Weiwan Wang ◽  
Weican Zhang ◽  
...  

Abstract Background: Docetaxel resistance affects prognosis in advanced prostate cancer (PCa). The precise mechanisms remain unclear. The transcription factor Forkhead box M1 (FOXM1), which participates in cell proliferation and cell cycle progression, has been reported to affect the sensitivity of chemotherapy. This study explores the role of FOXM1 in PCa docetaxel resistance and its association with kinesin family member 20 A (KIF20A), which is known to promote therapeutic resistance in some cancers.Methods: We monitored cell growth using MTT and colony formation assays, and cell apoptosis and cell cycle progression using flow cytometry. Wound-healing and transwell assays were used to detect cell invasion and migration. mRNA and protein expression were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. We monitored FOXM1 binding to the KIF20A promoter using the ChIP assay. Tumorigenicity in nude mice was used to assess in vivo tumorigenicity.Results: FOXM1 knockdown induced cell apoptosis and G2/M cell cycle arrest, suppressing cell migration and invasion in docetaxel-resistant PCa cell lines (DU145-DR and VCaP-DR). Exogenous FOXM1 overexpression was found in their parental cells. Specific FOXM1 inhibitor thiostrepton significantly weakened docetaxel resistance in vitro and in vivo. We also found FOXM1 and KIF20A exhibited consistent and highly correlated overexpression in PCa cells and tissues. FOXM1 also regulated KIF20A expression at the transcriptional level by acting directly on a Forkhead response element (FHRE) in its promoter. KIF20A overexpression could partially reverse the effect on cell proliferation, cell cycle proteins (cyclinA2, cyclinD1 and cyclinE1) and apoptosis protein (bcl-2 and PARP) of FOXM1 depletion.Conclusions: Our findings indicate highly expressed FOXM1 may help promote docetaxel resistance by inducing KIF20A expression, providing insight into novel chemotherapeutic strategies for combatting PCa docetaxel resistance.


Sign in / Sign up

Export Citation Format

Share Document