ependymal cilia
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
F. Javier Perez-Martinez ◽  
Manuel Cifuentes ◽  
Juan M. Luque

During development reelin sets the pace of neocortical neurogenesis enabling in turn newborn neurons to migrate, but whether and, if so, how reelin signaling affects the adult neurogenic niches remains uncertain. We show that reelin signaling, resulting in Dab1 phosphorylation, occurs in the ependymal-subependymal zone (EZ/SEZ) of the lateral ventricles where, along with its associated rostral migratory stream (RMS), the highest density of functional ApoER2 accumulates. Mice deficient for reelin, ApoER2 or Dab1 exhibit enlarged ventricles and dysplastic RMS. Moreover, while the conditional ablation of Dab1 in neural progenitor cells (NPCs) enlarges the ventricles and impairs neuroblasts clearance from the SEZ, the transgenic misexpression of reelin in NPCs of reelin-deficient mice normalizes the ventricular lumen and the density of ependymal cilia, ameliorating in turn neuroblasts migration; consistently, intraventricular infusion of reelin reroutes neuroblasts. These results demonstrate that reelin signaling persists sustaining the germinal niche of the lateral ventricles and influencing neuroblasts migration in the adult brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jasmine Chebli ◽  
Maryam Rahmati ◽  
Tammaryn Lashley ◽  
Brigitta Edeman ◽  
Anders Oldfors ◽  
...  

AbstractAmyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa−/−appb−/− mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.


2021 ◽  
Author(s):  
Jasmine Chebli ◽  
Maryam Rahmati ◽  
Tammaryn Lashley ◽  
Brigitta Edeman ◽  
Anders Oldfors ◽  
...  

Abstract Amyloid precursor protein (APP) is ubiquitously expressed in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa-/-appb-/- mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.


2021 ◽  
Author(s):  
Jasmine Chebli ◽  
Maryam Rahmati ◽  
Tammaryn Lashley ◽  
Brigitta Edeman ◽  
Anders Oldfors ◽  
...  

Amyloid precursor protein (APP) is ubiquitously expressed in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa-/-appb-/- mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.


2020 ◽  
Author(s):  
Yunjia Wang ◽  
Zhenhao Liu ◽  
Guanteng Yang ◽  
Benjamin Troutwine ◽  
Yang Gao ◽  
...  

Abstract Adolescent idiopathic scoliosis (AIS) is the most common pediatric musculoskeletal disorder worldwide, characterized by atypical spine curvatures in otherwise healthy children. Human genetic studies have identified candidate genes associated with AIS, however, only a few of these genes have been shown to recapitulate adult-viable scoliosis in animal models. To further define susceptibility loci for AIS, we performed whole exome sequencing on a cohort of 195 Han Chinese AIS patients and 229 healthy controls. We identified members of the axonemal dynein family associated with both sporadic and familial AIS. We demonstrate that disruption of the dynein axonemal heavy chain 10 (dnah10) gene results in recessive adult-viable scoliosis in zebrafish. These dnah10 mutant zebrafish display reduced ependymal cilia beating and a disassembly of the Reissner fiber in the hindbrain and spinal canal, concurrent with the onset of body curvatures. Altogther, these results demonstrate that mutations in axonemal dynein genes are linked with human AIS and suggest that ependymal cell cilia function plays an essential role in maintaining spine alignment in humans.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
A. H. Dur ◽  
T. Tang ◽  
S. Viviano ◽  
A. Sekuri ◽  
H. R. Willsey ◽  
...  

Abstract Background Hydrocephalus, the pathological expansion of the cerebrospinal fluid (CSF)-filled cerebral ventricles, is a common, deadly disease. In the adult, cardiac and respiratory forces are the main drivers of CSF flow within the brain ventricular system to remove waste and deliver nutrients. In contrast, the mechanics and functions of CSF circulation in the embryonic brain are poorly understood. This is primarily due to the lack of model systems and imaging technology to study these early time points. Here, we studied embryos of the vertebrate Xenopus with optical coherence tomography (OCT) imaging to investigate in vivo ventricular and neural development during the onset of CSF circulation. Methods Optical coherence tomography (OCT), a cross-sectional imaging modality, was used to study developing Xenopus tadpole brains and to dynamically detect in vivo ventricular morphology and CSF circulation in real-time, at micrometer resolution. The effects of immobilizing cilia and cardiac ablation were investigated. Results In Xenopus, using OCT imaging, we demonstrated that ventriculogenesis can be tracked throughout development until the beginning of metamorphosis. We found that during Xenopus embryogenesis, initially, CSF fills the primitive ventricular space and remains static, followed by the initiation of the cilia driven CSF circulation where ependymal cilia create a polarized CSF flow. No pulsatile flow was detected throughout these tailbud and early tadpole stages. As development progressed, despite the emergence of the choroid plexus in Xenopus, cardiac forces did not contribute to the CSF circulation, and ciliary flow remained the driver of the intercompartmental bidirectional flow as well as the near-wall flow. We finally showed that cilia driven flow is crucial for proper rostral development and regulated the spatial neural cell organization. Conclusions Our data support a paradigm in which Xenopus embryonic ventriculogenesis and rostral brain development are critically dependent on ependymal cilia-driven CSF flow currents that are generated independently of cardiac pulsatile forces. Our work suggests that the Xenopus ventricular system forms a complex cilia-driven CSF flow network which regulates neural cell organization. This work will redirect efforts to understand the molecular regulators of embryonic CSF flow by focusing attention on motile cilia rather than other forces relevant only to the adult.


2020 ◽  
Author(s):  
Qun Li ◽  
Zhiyuan Han ◽  
Navleen Singh ◽  
Berta Terré ◽  
Ryann M. Fame ◽  
...  

AbstractMulticiliated cells (MCCs) in the brain include the ependymal cells and choroid plexus (CP) epithelial cells. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. However, the mechanisms and functional significance of multiciliogenesis in the CP remain unknown. Deregulated oncogenic signals cause CP carcinoma (CPC), a rare but aggressive pediatric brain cancer. Here we show that aberrant NOTCH and Sonic Hedgehog signaling in mice drive tumors that resemble CPC in humans. NOTCH-driven CP tumors were monociliated, whereas disruption of the NOTCH complex restored multiciliation and decreased tumor growth. NOTCH suppressed multiciliation in tumor cells by inhibiting the expression of GEMC1 and MCIDAS, early regulators of multiciliogenesis. Consistently, GEMC1-MCIDAS function is essential for multiciliation in the CP, and is critical for correcting multiciliation defect in tumor cells by a NOTCH inhibitor. Disturbances to the GEMC1 program are commonly observed in human CPCs characterized by solitary cilia. Consistently, CPC driven by deletion of Trp53 and Rb1 in mice exhibits a cilia deficit consequent to loss of Gemc1-Mcidas expression. Taken together, these findings reveal a GEMC1-MCIDAS multiciliation program in the CP critical for inhibiting tumorigenesis, and it may have therapeutic implications for the treatment of CPC.


2020 ◽  
Vol 6 (4) ◽  
pp. e482 ◽  
Author(s):  
Evie Alexandra Robson ◽  
Luke Dixon ◽  
Liam Causon ◽  
William Dawes ◽  
Massimo Benenati ◽  
...  

ObjectiveTo report a neuroradiologic phenotype associated with reduced generation of multiple motile cilia (RGMC) and mutations in the multicilin gene. We hypothesize that the observed phenotype may reflect the emerging role that ependymal cilia play in regulating CSF production.MethodClinical and radiologic records were retrospectively reviewed for 7 consecutive patients diagnosed by the Leicester UK national primary ciliary dyskinesia (PCD) diagnostic laboratory.ResultsOn MRI scanning, all patients demonstrated hydrocephalus, choroid plexus hyperplasia (CPH), and arachnoid cysts. No patient had any sign of neurologic deficit. All patients had significant lung disease.ConclusionsWe conclude that there is a high incidence of hydrocephalus, arachnoid cysts, and CPH in MCIDAS-associated RGMC. In all cases, the observed hydrocephalus seems arrested in childhood without progression or adverse neurologic sequelae. Our new observation of CPH, which is associated with CSF overproduction, is the first macroscopic evidence that ependymal cilia may be involved in the regulation of CSF production and flow. We suggest that brain imaging should be performed in all cases of RGMC and that a diagnosis of PCD or RGMC be strongly considered in patients with unexplained hydrocephalus and a lifelong “wet”-sounding cough.


2020 ◽  
Vol 112 (16) ◽  
pp. 1253-1259
Author(s):  
Teruki Hagiwara ◽  
Hajime Hagino ◽  
Kaho Ueda ◽  
Mina Nakama ◽  
Takeshi Minami

2020 ◽  
Author(s):  
Zakia Abdelhamed ◽  
Marshall Lukacs ◽  
Sandra Cindric ◽  
Heymut Omran ◽  
Rolf W. Stottmann

AbstractPrimary ciliary dyskinesia (PCD) is a human condition of dysfunctional motile cilia characterized by recurrent lung infection, infertility, organ laterality defects, and partially penetrant hydrocephalus. We recovered a mouse mutant from a forward genetic screen that developed all the phenotypes of PCD. Whole exome sequencing identified this primary ciliary dyskinesia only (Pcdo) allele to be a nonsense mutation (c.5236A>T) in the Spag17 coding sequence creating a premature stop codon at position 1746 (K1746*). The Pcdo variant abolished different isoforms of SPAG17 in the Pcdo mutant testis but not in the brain. Our data indicate differential requirements for SPAG17 in different motile cilia cell types. SPAG17 is required for proper development of the sperm flagellum, and is essential for either development or stability of the C1 microtubule structure within cilia, but not the brain ependymal cilia. We identified changes in ependymal cilia beating frequency but these did not apparently alter lateral ventricle cerebrospinal fluid (CSF) flow. Aqueductal (Aq) stenosis resulted in significantly slower and abnormally directed CSF flow and we suggest this is the root cause of the hydrocephalus. The Spag17Pcdo homozygous mutant mice are generally viable to adulthood, but have a significantly shortened life span with chronic morbidity. Our data indicate that the c.5236A>T Pcdo variant is a hypomorphic allele of Spag17 gene that causes phenotypes related to motile, but not primary, cilia. Spag17Pcdo is a novel and useful model for elucidating the molecular mechanisms underlying development of PCD in the mouse.


Sign in / Sign up

Export Citation Format

Share Document