Effect of acetaldehyde and cyanamide on the metabolism of formaldehyde by hepatocytes, mitochondria, and soluble supernatant from rat liver

1984 ◽  
Vol 232 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Elisa Dicker ◽  
Arthur I. Cederbaum
1984 ◽  
Vol 220 (1) ◽  
pp. 243-252 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
J Belin ◽  
B Ketterer

Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.


1988 ◽  
Vol 254 (3) ◽  
pp. 841-845 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
N Gillies ◽  
B Ketterer

DNA peroxidized by exposure to ionizing radiation in the presence of oxygen is a substrate for the Se-independent GSH peroxidase activity of several GSH transferases, GSH transferases 5-5, 3-3 and 4-4 being the most active in the rat liver soluble supernatant fraction (500, 35 and 20 nmol/min per mg of protein respectively) and GSH transferases mu and pi the most active, so far found, in the human liver soluble supernatant fraction (80 and 10 nmol/min per mg respectively). Although the GSH transferase content of the rat nucleus was found to be much lower than that of the soluble supernatant, nuclear GSH transferases are likely to be more important in the detoxification of DNA hydroperoxide produced in vivo. Two nuclear fractions were studied, one extracted with 0.075 M-saline/0.025 M-EDTA, pH 8.0, and the other extracted from the residue with 8.5 M-urea. The saline/EDTA fraction contained subunits 1, 2, 3, 4 and a novel subunit, similar but not identical to 5, provisionally referred to as 5*, in the proportions 40:25:5:5:25 respectively. The 8.5 M-urea-extracted fraction contained principally subunit 5* together with a small amount of subunit 6 in the proportion 95:5 respectively. GSH transferase 5*-5* purified from the 8.5 M-urea extract has the highest activity towards DNA hydroperoxide of any GSH transferase so far studied (1.5 mumol/min per mg). A Se-dependent GSH peroxidase fraction from rat liver was also active towards DNA hydroperoxide; however, since this enzyme accounts for only 14% of the GSH peroxidase activity detectable in the nucleus, GSH transferases may be the more important source of this activity. The possible role of GSH transferases, in particular GSH transferase 5*-5*, in DNA repair is discussed.


1955 ◽  
Vol 1 (4) ◽  
pp. 315-330 ◽  
Author(s):  
Arthur J. Emery ◽  
Alexander L. Dounce

1. Cytochemical studies of the intracellular distribution of alkaline phosphatase in rat liver have been made, using a fractionation procedure recently developed in this laboratory (8) and a similar but modified method not described previously. Aqueous media were used in both cases. 2. The alkaline phosphatase was found to consist of two forms, one of which is strongly activated by magnesium and one of which is not sensitive to this metal. 3. The form of the enzyme that is not activated by magnesium occurs mainly in the nuclear fraction, where it seems to be rather firmly bound. Some of this form of the enzyme is also found in the microsomes, but very little if any occurs in the soluble supernatant fraction. 4. The form of alkaline phosphatase which is activated by magnesium occurs mainly in the soluble supernatant fraction, but what is believed are significant amounts also occur in nuclei. A significant portion of this form of the enzyme can be extracted from the isolated nuclei with cold, isotonic saline solution. Some activity of this form of the enzyme is also found in the microsomal fraction. 5. Mitochondria appear to contain relatively little alkaline phosphatase of either kind. 6. The concept of a porous nuclear membrane has been invoked to explain some of the results obtained in this work. It is postulated that part at least of the form of the enzyme that is activated by magnesium is free to diffuse back and forth through pores in the nuclear membrane, whereas this is considered not to be possible for the form of the enzyme that is insensitive to magnesium as a result of the firm binding of the latter to nuclear substance.


1982 ◽  
Vol 2 (11) ◽  
pp. 861-865 ◽  
Author(s):  
C. Edlund ◽  
Å. Elhammer ◽  
G. Dallner

The distribution, synthesis transport, and glycosylation of rat-liver DT-diaphorase has been investigated. The enzyme could be isolated using specific antibodies, mainly from the soluble supernatant but also from microsomal vesicles, Golgi membrane, and mitochondria. 40% of the microsomal enzyme was located in the lumen or on the interior side of the membrane, the rest remaining as an integral non-extractable part of the membrane. Synthesis of DT-diaphorase takes place on both free and bound ribosomes, although it was found to be transported in a sequential manner from the rough to the smooth endoplasmic reticulum and also subsequently to the mitochondria. The rough and smooth microsomal DT-diaphorase contains covalently bound carbohydrate, but no sugar moiety could be detected bound to the cytoplasmic form of the enzyme.


Author(s):  
W. A. Shannon ◽  
M. A. Matlib

Numerous studies have dealt with the cytochemical localization of cytochrome oxidase via cytochrome c. More recent studies have dealt with indicating initial foci of this reaction by altering incubation pH (1) or postosmication procedure (2,3). The following study is an attempt to locate such foci by altering membrane permeability. It is thought that such alterations within the limits of maintaining morphological integrity of the membranes will ease the entry of exogenous substrates resulting in a much quicker oxidation and subsequently a more precise definition of the oxidative reaction.The diaminobenzidine (DAB) method of Seligman et al. (4) was used. Minced pieces of rat liver were incubated for 1 hr following toluene treatment (5,6). Experimental variations consisted of incubating fixed or unfixed tissues treated with toluene and unfixed tissues treated with toluene and subsequently fixed.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
F. G. Zaki

Fetal and neonatal liver injury induced by agents circulating in maternal plasma, even though well recognized, its morphological manifestations are not yet established. As part of our studies of fetal and neonatal liver injury induced by maternal nutritional disorders, metabolic impairment and toxic agents, the effects of two anti-inflammatory steroids have been recently inves tigated.Triamcinolone and methyl prednisolone were injected each in a group of rats during pregnancy at a-dosage level of 2 mgm three times a week. Fetal liver was studied at 18 days of gestation. Litter size and weight markedly decreased than those of control rats. Stillbirths and resorption were of higher incidence in the triamcinolone group than in those given the prednisolone.


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


Sign in / Sign up

Export Citation Format

Share Document