triterpenoid glycosides
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 86 ◽  
pp. 104720
Author(s):  
Jose L. Perez ◽  
Siddanagouda R. Shivanagoudra ◽  
Wilmer H. Perera ◽  
Da Mi Kim ◽  
Chia S. Wu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Supannikar Tawinwung ◽  
Dhirarin Junsaeng ◽  
Supanut Utthiya ◽  
Phisit Khemawoot

Abstract Background ECa 233 is a standardized extract of C. asiatica containing the triterpenoid glycosides, madecassoside to asiaticoside in the ratio of (1.5 ± 0.5):1. Anti-inflammatory activities of ECa 233 have been reported; however the immunomodulatory effects of ECa 233 on regulatory T cells, which have a pivotal role in immune regulation, has not been elucidated. Therefore, we investigated the effects of ECa 233 on regulatory T cells that may provide benefits in autoimmune and chronic inflammatory diseases. Methods ECa 233 was prepared as oral suspension in 0.5% carboxymethylcellulose and administered to male Wistar rats via oral gavage. The pharmacokinetics and toxicity of ECa 233 were evaluated. Splenic lymphocytes were isolated and analyzed by flow cytometry and qPCR to determine the immunomodulatory effects of ECa 233 on regulatory T cells. Results All rats had good tolerability to ECa 233 and other test preparations. The pharmacokinetic study showed low oral bioavailability for both triterpenoids, with the maximum plasma concentration reached at 4 h for asiaticoside and at 0.5 h for madecassoside. Multiple oral administration of ECa 233 reduced the frequency of T cells, particularly CD8 T cells in rats. ECa 233 enhanced the percentage of regulatory T cells, characterized by high expression of CD25+ and upregulation of FoxP3 gene. Conclusions The present study demonstrated that ECa 233 possesses immunosuppressive properties by enhancing regulatory T cells. These results provide in vivo evidence for the anti-inflammatory action of ECa 233, in line with previously reports, and the potential uses of ECa 233 in the treatment of chronic inflammatory and autoimmune diseases.


2021 ◽  
pp. 108444
Author(s):  
Mohammad Sohail Akhtar ◽  
S.R. Mir ◽  
Sadri Abdullah Said ◽  
Mohammad Amzad Hossain ◽  
Mohammad Ali

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1334
Author(s):  
Bo-Ram Choi ◽  
Hyoung-Geun Kim ◽  
Wonmin Ko ◽  
Linsha Dong ◽  
Dahye Yoon ◽  
...  

Acanthopanax sessiliflorus (Araliaceae) have been reported to exhibit many pharmacological activities. Our preliminary study suggested that A. sessiliflorus fruits include many bioactive 3,4-seco-triterpenoids. A. sessiliflorus fruits were extracted in aqueous EtOH and fractionated into EtOAc, n-BuOH, and H2O fractions. Repeated column chromatographies for the organic fractions led to the isolation of 3,4-seco-triterpenoid glycosides, including new compounds. Ultra-high-performance liquid chromatography (UPLC) mass spectrometry (MS) systems were used for quantitation and quantification. BV2 and RAW264.7 cells were induced by LPS, and the levels of pro-inflammatory cytokines and mediators and their underlying mechanisms were measured by ELISA and Western blotting. NMR, IR, and HR-MS analyses revealed the chemical structures of the nine noble 3,4-seco-triterpenoid glycosides, acanthosessilioside G–O, and two known ones. The amounts of the compounds were 0.01–2.806 mg/g, respectively. Acanthosessilioside K, L, and M were the most effective in inhibiting NO, PGE2, TNF-α, IL-1β, and IL-6 production and reducing iNOS and COX-2 expression. In addition, it had inhibitory effects on the LPS-induced p38 and ERK MAPK phosphorylation in both BV2 and RAW264.7 cells. Nine noble 3,4-seco-triterpenoid glycosides were isolated from A. sessiliflorus fruits, and acanthosessilioside K, L, and M showed high anti-inflammatory and anti-neuroinflammatory effects.


Fitoterapia ◽  
2021 ◽  
pp. 105003
Author(s):  
Li-Ping Zhu ◽  
Hui-Min Yang ◽  
Xian Zheng ◽  
Guan-Tao Zheng ◽  
Cui-Hua Jiang ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Huihui Sun ◽  
Hui Zhu ◽  
Jianping Wu ◽  
Yuyan Wang ◽  
Guihua Li ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Tzi-Yuan Wang ◽  
Yu-Li Tsai ◽  
Yu-Wei Wu ◽  
...  

Ganoderma lucidum is a medicinal fungus whose numerous triterpenoids are its main bioactive constituents. Although hundreds of Ganoderma triterpenoids have been identified, Ganoderma triterpenoid glycosides, also named triterpenoid saponins, have been rarely found. Ganoderic acid A (GAA), a major Ganoderma triterpenoid, was synthetically cascaded to form GAA-15-O-β-glucopyranoside (GAA-15-G) by glycosyltransferase (BtGT_16345) from Bacillus thuringiensis GA A07 and subsequently biotransformed into a series of GAA glucosides by cyclodextrin glucanotransferase (Toruzyme® 3.0 L) from Thermoanaerobacter sp. The optimal reaction conditions for the second-step biotransformation of GAA-15-G were found to be 20% of maltose; pH 5; 60 °C. A series of GAA glucosides (GAA-G2, GAA-G3, and GAA-G4) could be purified with preparative high-performance liquid chromatography (HPLC) and identified by mass and nucleic magnetic resonance (NMR) spectral analysis. The major product, GAA-15-O-[α-glucopyranosyl-(1→4)-β-glucopyranoside] (GAA-G2), showed over 4554-fold higher aqueous solubility than GAA. The present study demonstrated that multiple Ganoderma triterpenoid saponins could be produced by sequential actions of BtGT_16345 and Toruzyme®, and the synthetic strategy that we proposed might be applied to many other Ganoderma triterpenoids to produce numerous novel Ganoderma triterpenoid saponins in the future.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1896
Author(s):  
Pieter Venter ◽  
Kholofelo Malemela ◽  
Vusi Mbazima ◽  
Leseilane J. Mampuru ◽  
Christo J. F. Muller ◽  
...  

Momordica balsamina leaf extracts originating from three different geographical locations were analyzed using reversed-phase liquid chromatography (RP-LC) coupled to travelling wave ion mobility (TWIMS) and high-resolution mass spectrometry (HRMS) in conjunction with chemometric analysis to differentiate between potential chemotypes. Furthermore, the cytotoxicity of the three individual chemotypes was evaluated using HT-29 colon cancer cells. A total of 11 molecular species including three flavonol glycosides, five cucurbitane-type triterpenoid aglycones and three glycosidic cucurbitane-type triterpenoids were identified. The cucurbitane-type triterpenoid aglycones were detected in the positive ionization mode following dehydration [M + H − H2O]+ of the parent compound, whereas the cucurbitane-type triterpenoid glycosides were primarily identified following adduct formation with ammonia [M + NH4]+. The principle component analysis (PCA) loadings plot and a variable influence on projection (VIP) analysis revealed that the isomeric pair balsaminol E and/or karavilagen E was the key molecular species contributing to the distinction between geographical samples. Ultimately, based on statistical analysis, it is hypothesized that balsaminol E and/or karavilagen E are likely responsible for the cytotoxic effects in HT-29 cells.


2020 ◽  
pp. 1-7
Author(s):  
Hui-Hui Sun ◽  
Wen-Yan Lv ◽  
Jie Tan ◽  
Yu-Cheng Tang ◽  
Hui Zhu ◽  
...  

2020 ◽  
Vol 19 (3) ◽  
pp. 47-61
Author(s):  
Agnieszka Szopa ◽  
Marta Klimek-Szczykutowicz

The flower (inflorescence, basket-type inflorescence) of marigold (Calendulae officinalis flos) is a well-known plant raw material in traditional phytomedicine. Noteworthy is its rich chemical composition, which is dominated by flavonoids and terpenoids. Terpenoids are mainly represented by specific for this species oleanolic acid derivatives: triterpenoid saponins – calendulosides A-H and triterpenoid glycosides, so-called calendulaglycosides A and B. The biological activity profiles of the raw material, such as anti-inflammatory, antimicrobial, immunostimulatory and antioxidant properties, determine its use especially in the treatment of dermatological diseases. Interestingly, recent scientific studies proved, in addition to spasmolitic, hypolipemic and antidiabetic properties, such heath promoting activity as cardioprotective, hepatoregenerative, pancreas regenerating, neuroprotective and even anticancer activities. Moreover, C. officinalis is used in cosmetology and food industry.


Sign in / Sign up

Export Citation Format

Share Document