scholarly journals One-Pot Bi-Enzymatic Cascade Synthesis of Novel Ganoderma Triterpenoid Saponins

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Tzi-Yuan Wang ◽  
Yu-Li Tsai ◽  
Yu-Wei Wu ◽  
...  

Ganoderma lucidum is a medicinal fungus whose numerous triterpenoids are its main bioactive constituents. Although hundreds of Ganoderma triterpenoids have been identified, Ganoderma triterpenoid glycosides, also named triterpenoid saponins, have been rarely found. Ganoderic acid A (GAA), a major Ganoderma triterpenoid, was synthetically cascaded to form GAA-15-O-β-glucopyranoside (GAA-15-G) by glycosyltransferase (BtGT_16345) from Bacillus thuringiensis GA A07 and subsequently biotransformed into a series of GAA glucosides by cyclodextrin glucanotransferase (Toruzyme® 3.0 L) from Thermoanaerobacter sp. The optimal reaction conditions for the second-step biotransformation of GAA-15-G were found to be 20% of maltose; pH 5; 60 °C. A series of GAA glucosides (GAA-G2, GAA-G3, and GAA-G4) could be purified with preparative high-performance liquid chromatography (HPLC) and identified by mass and nucleic magnetic resonance (NMR) spectral analysis. The major product, GAA-15-O-[α-glucopyranosyl-(1→4)-β-glucopyranoside] (GAA-G2), showed over 4554-fold higher aqueous solubility than GAA. The present study demonstrated that multiple Ganoderma triterpenoid saponins could be produced by sequential actions of BtGT_16345 and Toruzyme®, and the synthetic strategy that we proposed might be applied to many other Ganoderma triterpenoids to produce numerous novel Ganoderma triterpenoid saponins in the future.

2021 ◽  
Vol 22 (18) ◽  
pp. 9744
Author(s):  
Jiumn-Yih Wu ◽  
Hsiou-Yu Ding ◽  
Tzi-Yuan Wang ◽  
Yun-Rong Zhang ◽  
Te-Sheng Chang

Ganoderma lucidum is a medicinal fungus abundant in triterpenoids, its primary bioactive components. Although numerous Ganoderma triterpenoids have already been identified, rare Ganoderma triterpenoid saponins were recently discovered. To create novel Ganoderma saponins, ganoderic acid G (GAG) was selected for biotransformation using four Bacillus glycosyltransferases (GTs) including BtGT_16345 from the Bacillus thuringiensis GA A07 strain and three GTs (BsGT110, BsUGT398, and BsUGT489) from the Bacillus subtilis ATCC 6633 strain. The results showed that BsUGT489 catalyzed the glycosylation of GAG to GAG-3-o-β-glucoside, while BsGT110 catalyzed the glycosylation of GAG to GAG-26-o-β-glucoside, which showed 54-fold and 97-fold greater aqueous solubility than that of GAG, respectively. To our knowledge, these two GAG saponins are new compounds. The glycosylation specificity of the four Bacillus GTs highlights the possibility of novel Ganoderma triterpenoid saponin production in the future.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3457 ◽  
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Yu-Han Kao ◽  
Jiumn-Yih Wu ◽  
Yu-Wei Wu ◽  
...  

Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-β-glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-β-glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-β-glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (kcat) of BsGT110 toward GAA at pH 6 (kcat = 11.2 min−1) was 3-fold higher than that at pH 7 (kcat = 3.8 min−1), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids.


Fermentation ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 101
Author(s):  
Te-Sheng Chang ◽  
Horng-Huey Ko ◽  
Tzi-Yuan Wang ◽  
Chun-Hsien Lee ◽  
Jiumn-Yih Wu

The medicinal fungus Ganoderma lucidum contains many bioactive triterpenoids, ganoderic acid A (GAA) being one of the major ones. The present study explored the microbial biotransformation of GAA, isolating 283 strains of soil actinomycetes and determining their abilities to biotransform GAA with ultra-performance liquid chromatography analysis. One positive strain, AI 045, was selected to validate the biotransformation activity. The strain was identified as Streptomyces sp. based on the sequenced 16S rRNA gene. The produced compound obtained from the biotransformation of GAA was purified with the preparative high-performance liquid chromatography method and identified as 3-O-acetyl GAA based on mass and nuclear magnetic resonance spectral data. The present study is the first report that bacteria have the novel ability to biotransform the triterpenoids of fungus G. lucidum. Moreover, the identified 3-O-acetyl GAA is a new triterpenoid product discovered in microbes.


2021 ◽  
Vol 85 (3) ◽  
pp. 687-690
Author(s):  
Te-Sheng Chang ◽  
Chien-Min Chiang ◽  
Jiumn-Yih Wu ◽  
Yu-Li Tsai ◽  
Huei-Ju Ting

ABSTRACT Ganoderic acid A (GAA) is a lanostane-type triterpenoid, isolated from medicinal fungus Ganoderma lucidum, and possesses multiple bioactivities. In the present study, GAA was sequentially biotransformed by 2 recently discovered Bacillus glycosyltransferases (GT), BtGT_16345 and BsGT110, and the final product was purified and identified as a new compound, GAA-15,26-O-β-diglucoside, which showed 1024-fold aqueous solubility than GAA.


2018 ◽  
Vol 21 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ghasem Marandi

Aim and Objective: The reaction of cyclohexylisocyanide and 2-aminopyridine-3- carboxylic acid in the presence of benzaldehyde derivatives in ethanol led to 3-(cyclohexylamino)-2- arylimidazo[1,2-a]pyridine-8-carboxylic acids in high yields. In a three component condensation reaction, isocyanide reacts with 2-aminopyridine-3-carboxylic acid and aromatic aldehydes without any prior activation. Material and Methods: The synthesized products have stable structures which have been characterized by IR, 1H, 13C and Mass spectroscopy as well as CHN-O analysis. Results: In continuation of our attempts to develop simple one-pot routes for the synthesis of 3- (cyclohexylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids, aromatic aldehydes with divers substituted show a high performance. Conclusion: In conclusion, this study introduces the art of combinatorial chemistry using a simple one-pot procedure for the synthesis of new materials which are interesting compounds in medicinal and biological sciences.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 678
Author(s):  
Zhongkai Wu ◽  
Haifu Huang ◽  
Wenhui Xiong ◽  
Shiming Yang ◽  
Huanhuan Huang ◽  
...  

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g−1 at 1 A g−1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g−1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document