charge exchange reaction
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Manfred Daum ◽  
Peter-R. Kettle

The most precise value for the \pi^0π0 mass was obtained from the measurement of the mass difference m_{\pi^-}-m_{\pi^0} = 4.593\,64(48)mπ−−mπ0=4.59364(48),MeV/c^22 in the charge exchange reaction \pi^-π−p \rightarrow \pi^0→π0n at PSI. With the most precise charged pion mass value, m_{\pi^+} = 139.570\,21(14)mπ+=139.57021(14),MeV/c^22 and the validity of the CPT theorem (m_{\pi^-} = m_{\pi^+}mπ−=mπ+), a value m_{\pi^0} = 134.976\,57(50)mπ0=134.97657(50),MeV/c^22 is obtained. The measurements also revealed, for the first time, evidence of an unexpectedly large contribution from Coulomb de-excitation states during the pionic atom cascade.


2021 ◽  
pp. 104691
Author(s):  
V. Soukeras ◽  
F. Cappuzzello ◽  
D. Carbone ◽  
M. Cavallaro ◽  
C. Agodi ◽  
...  

Author(s):  
Izyan Hazwani Hashim ◽  
Hiroyasu Ejiri

This is a brief review on ordinary muon capture (OMC) experiments at Research Center for Nuclear Physics (RCNP) Osaka University relevant for the study of double beta decays (DBDs) and astro anti-neutrinos (neutrino) nuclear responses. OMC usually leaves the nucleus in highly excited unbound state. OMC is a charge exchange reaction via the charged weak boson as given by (μ,vμ) reactions with μ and vμ being the muon and muon neutrino. Subjects discussed include 1) unique features of OMC for studying DBDs and astro anti-neutrino (neutrino) nuclear responses, 2) experiments of OMCs on 100Mo and natMo to study neutrino nuclear responses for DBDs and astro anti-neutrinos, 3) impact of the OMC results on neutrino nuclear responses for DBDs and astro anti-neutrinos. Remarks and perspectives on OMC experiments for neutrino nuclear responses are briefly described.


Author(s):  
Manuela Cavallaro ◽  
Jessica I. Bellone ◽  
Salvatore Calabrese ◽  
Clementina Agodi ◽  
Stefano Burrello ◽  
...  

The 40Ca(18O,18F)40K single charge exchange (SCE) reaction is explored at an incident energy of 275 MeV and analyzed consistently by collecting the elastic scattering and inelastic scattering data under the same experimental conditions. Full quantum-mechanical SCE calculations of the direct mechanism are performed by including microscopic nuclear structure inputs and adopting either a bare optical potential or a coupled channel equivalent polarization potential (CCEP) constrained by the elastic and inelastic data. The direct SCE mechanism describes the magnitude and shape of the angular distributions rather well, thus suggesting the suppression of sequential multi-nucleon transfer processes.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 98
Author(s):  
Horst Lenske ◽  
Jessica Bellone ◽  
Maria Colonna ◽  
Danilo Gambacurta

The theoretical approach to a sequential heavy ion double charge exchange reaction is presented. A brief introduction into the formal theory of second-order nuclear reactions and their application to Double Single Charge Exchange (DSCE) reactions by distorted wave theory is given, thereby completing the theoretical background to our recent work. Formally, the DSCE reaction amplitudes are shown to be separable into superpositions of distortion factors, accounting for initial and final state ion–ion interactions, and nuclear matrix elements. A broad space is given to the construction of nuclear DSCE response functions on the basis of polarization propagator theory. The nuclear response tensors resemble the nuclear matrix elements of 2νββ decay in structure but contain in general a considerable more complex multipole and spin structure. The QRPA theory is used to derive explicit expressions for nuclear matrix elements (NMEs). The differences between the NME of the first and the second interaction vertexes in a DSCE reaction is elucidated. Reduction schemes for the transition form factors are discussed by investigating the closure approximation and the momentum structure of form factors. DSCE unit strength cross sections are derived.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Claude Amsler ◽  
Massimiliano Antonello ◽  
Alexander Belov ◽  
Germano Bonomi ◽  
Roberto Sennen Brusa ◽  
...  

AbstractAntihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of ~250 ns. The pulsed source is generated by the charge-exchange reaction between Rydberg positronium atoms—produced via the injection of a pulsed positron beam into a nanochanneled Si target, and excited by laser pulses—and antiprotons, trapped, cooled and manipulated in electromagnetic traps. The pulsed production enables the control of the antihydrogen temperature, the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. The production of pulsed antihydrogen is a major landmark in the AE$$\bar{g}$$ ḡ IS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.


2021 ◽  
Author(s):  
F. Othman ◽  
I. H. Hashim ◽  
H. Ejiri ◽  
R. Razali ◽  
F. Ibrahim ◽  
...  

2020 ◽  
Vol 643 ◽  
pp. A76 ◽  
Author(s):  
P. Hily-Blant ◽  
G. Pineau des Forêts ◽  
A. Faure ◽  
D. R. Flower

Measurements of the nitrogen isotopic ratio in Solar System comets show a constant value, ≈140, which is three times lower than the protosolar ratio, a highly significant difference that remains unexplained. Observations of static starless cores at early stages of collapse confirm the theoretical expectation that nitrogen fractionation in interstellar conditions is marginal for most species. Yet, observed isotopic ratios in N2H+ are at variance with model predictions. These gaps in our understanding of how the isotopic reservoirs of nitrogen evolve, from interstellar clouds to comets, and, more generally, to protosolar nebulae, may have their origin in missing processes or misconceptions in the chemistry of interstellar nitrogen. So far, theoretical studies of nitrogen fractionation in starless cores have addressed the quasi-static phase of their evolution such that the effect of dynamical collapse on the isotopic ratio is not known. In this paper, we investigate the fractionation of 14N and 15N during the gravitational collapse of a pre-stellar core through gas-phase and grain adsorption and desorption reactions. The initial chemical conditions, which are obtained in steady state after typically a few Myr, show low degrees of fractionation in the gas phase, in agreement with earlier studies. However, during collapse, the differential rate of adsorption of 14N- and 15N-containing species onto grains results in enhanced 15N:14N ratios, in better agreement with the observations. Furthermore, we find differences in the behavior, with increasing density, of the isotopic ratio in different species. We find that the collapse must take place on approximately one free-fall timescale, based on the CO abundance profile in L183. Various chemical effects that bring models into better agreement with observations are considered. Thus, the observed values of 14N2H+:N15NH+ and 14N2H+:15NNH+ could be explained by different temperature dependences of the rates of dissociative recombination of these species. We also study the impact of the isotopic sensitivity of the charge-exchange reaction of N2 with He+ on the fractionation of ammonia and its singly deuterated analog and find significant depletion in the 15N variants. However, these chemical processes require further experimental and theoretical investigations, especially at low temperature. These new findings, such as the depletion-driven fractionation, may also be relevant to the dense, UV-shielded regions of protoplanetary disks.


2020 ◽  
Vol 124 (17) ◽  
pp. 3358-3363 ◽  
Author(s):  
Miao-Miao He ◽  
Jie Hu ◽  
Chun-Xiao Wu ◽  
Yaya Zhi ◽  
Shan Xi Tian

Sign in / Sign up

Export Citation Format

Share Document