When Information Came of Age
Latest Publications


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780195135978, 9780197561645

Author(s):  
Daniel R. Headrick

Not all those who contributed to the culture of information were members of the bourgeoisie. In the area of visual representation, two names—Cassini and Harrison—illustrate how widely the culture of information had spread to all classes of society. For over a century, four generations of Cassinis dominated French astronomy and cartography. The founder of this illustrious lineage, Giovanni Domenico Cassini (1625 –1712), was a professor of astronomy at the University of Bologna when he was recruited to head the Paris Observatory in 1669. He became a French citizen, changed his name to Jean-Dominique Cassini, and entered into the privileged elite of the Old Regime. At the observatory, Jean Cassini discovered the rotation of the planets and developed a method of determining longitude by sighting the moons of Jupiter. He also launched the most elaborate cartographic project of his time, the map of France known as “la carte de Cassini.” His son Jacques Cassini (1677–1756), known as Cassini II, succeeded him at the observatory and as a member of the French Academy of Sciences. Jacques carried on his father’s work of measuring the arc of the meridian—a necessary but preliminary step in constructing an accurate map of France. In this effort, which was to take fifty years, Jacques Cassini was seconded by his son César-François Cassini de Thury (1714 –1784), known (of course) as Cassini III, who was also a member of the Academy and director of the observatory. When César-François died in 1784, his son Jacques-Dominique (1748 – 1845), count of Cassini (Cassini IV), carried on as head of the observatory, member of the academy, and director of the map project. The Cassinis’ Carte de France, completed in 1793, was a masterpiece of Old Regime cartography. Jacques­ Dominique’s son Gabriel (1784 –1832) broke with the family tradition and became a botanist. In contrast to this story of distinction and privilege, John Harrison’s life was one of struggle and hardship, rewarded by success only at the very end. Harrison (1693 –1776) was the son of a carpenter who taught himself how to build clocks.


Author(s):  
Daniel R. Headrick

We live in a sea of numbers. surrounded by a culture of statistics—IQs, grade point averages, gross domestic products, batting aver­ages, Dow-Jones Industrial Averages, probabilities of precipitation—it is not easy to imagine a world just awakening to the meaning of numbers. Statistics, in the sense of numbers representing data, first appeared in the eighteenth century and became a regular feature of the cultural landscape in the early nineteenth century. Nothing illustrates better the transformative power of numbers than the changing views of one of the era’s most influential thinkers, Thomas Robert Malthus. Malthus (1766 –1834) will always be remembered for his lapidary statements such as: “Population, when unchecked, increases in a geometrical ratio. Subsistence only increases in an arithmetical ratio.” This statement sounds mathematical, as if it were a law of nature, yet ominous: “if unchecked,” disaster will surely strike. That is how Malthusians, then and now, have always read it. Malthus wrote these words in 1798 to refute giddy optimists like the Marquis de Condorcet and William Godwin, who believed in the inevitability of progress. Though sincere, he wrote his Essay on Population without benefit of data. It aroused a passionate debate and encouraged the government to undertake the first census in British history in 1801. Armed with census data, Malthus revisited his ideas. He published a second edition in 1803 and, in later years, four more revised editions; they bore the same title but a different subtitle, for they were really a different work: many times longer, full of information, and much more refined. In the course of his life, Malthus changed his thinking about population and subsistence. He no longer predicted an inevitable demographic disaster but instead realized that “in no state that we have yet known, has the power of population been left to exert itself with perfect freedom.” Unlike North Americans and “uncivilized” peoples, Europeans kept their numbers under control by preventive checks, rather than waiting for famines to bring populations in line with the food supply: “An infrequency of the marriage union from the fear of a family . . . may be considered . . . as the most powerful of the checks, which in modern Europe, keep down the population to the level of the means of subsistence.”


Author(s):  
Daniel R. Headrick

Paul revere, the american revolutionary, remembered his midnight ride of April 18, 1775, in these words: “I agreed with a Colonel Conant and some other gentlemen, that if the British went out by water, we should shew two lanthornes in the North Church steeple, and if by land, one, as a signal, for we were apprehensive it would be difficult to cross the Charles River, or git over Boston neck.” Eighteen years later, on July 12, 1793, Claude Chappe presented his semaphore telegraph to the Committee of Public Instruction of the French National Convention. At Saint-Fargeau, near Paris, Deputy Pierre Daunou sent a message to Deputy Joseph Lakanal at Saint-Martin-du-Tertre, thirty-five kilometers away: “Daunou has arrived here. He announces that the National Convention has just authorized its committee of general security to affix the seals to the papers of the representatives of the people.” Nine minutes later, Lakanal replied: “The inhabitants of this beautiful country are worthy of liberty because of their love for it and their respect for the National Convention and its laws.” Between these two dates there occurred a revolution in communication. Revere used a simple, prearranged, onetime signal containing only three potential messages: “by land,” “by sea,” or “no news.” Chappe could communicate any message, in either direction, faster than a galloping horse. This was only one of several great changes in communication that occurred in the late eighteenth and early nineteenth centuries under the pressure of revolution and war. Humans are gifted, both naturally and culturally, at communicating face-to-face. Long-distance communications, however, require elaborate systems to convey information to its destination in a timely manner. Over­coming distances is but one of the functions of communication systems. We must also draw a distinction between the transmission of information from one person to another, for example, by speech, letter, telephone, telegram, or e-mail, and the dissemination of information from one point to many, by such means as newspapers, books, pamphlets, flyers, and posters, or by radio and television broadcasts and the World Wide Web.


Author(s):  
Daniel R. Headrick

Encyclopedias and dictionaries are the workhorses of culture; almost everyone consults them from time to time, but almost no one studies them. These useful compendia of knowledge serve their purpose for a few years and then are shelved or pulped. There are some notable exceptions to this rule, works whose significance transcends the time in which they appear. The most famous example of these is the Encyclopédie, ou dictionnaire raisonné of Diderot and d’Alembert. Denis Diderot (1713 – 1784) was one of the most prolific critics and essayists of the philosophes and a star of the French Enlightenment. His friend Jean Le Rond d’Alembert (1717 – 1783) was a mathematician, astronomer, and science writer. Together, they organized and edited the most ambitious work of their age. They planned it to be a universal compendium of all knowledge, organized in a coherent manner for the edification and enlightenment of the educated reading public. At the same time, they wanted it to be useful, practical, modern, and up-to-date. Despite its steep price, it enjoyed a huge popular success and became one of the best-selling works of the century. Yet it left a poor legacy. Its sequel, the Encyclopédie méthodique, was a com­mercial and scientific failure that few people bought at the time and hardly anyone has looked at since. Today, intellectuals pay lip service to the origi­nal Encyclopédie, but no one goes out and buys a new edition. Contrast this fate with that of two other encyclopedias that appeared a few years after Diderot and d’Alembert’s: the Encyclopaedia Britannica and the Brockhaus. The first edition of the Britannica, which appeared in 1771, was a modest work, hastily put together by a printer, an engraver, and a penurious scribbler. The German Conversations-Lexicon was the creation of the publishing entrepreneur Friedrich Arnold Brockhaus (1772–1823), who bought up an unfinished encyclopedia, hired writers to complete it, and issued the first edition in 1809 – 1811. These were no masterpieces of erudition or compendia of all knowledge, but simple reference works.


Author(s):  
Daniel R. Headrick

Of the many labels pundits have suggested to identify the age we live in—the atomic age, the Postindustrial era, the space age—the expression information age has become the standard cliché. Why this label? Why now? No doubt because we have all sorts of new devices designed to keep us informed and in touch with anyone, anywhere, and at any time: beepers, cellular telephones, computers, “personal digital assistants,” and all their peripherals. We access more media of more varied sorts than ever before: dozens of television channels, soon to be hundreds; electronic networks turning into global information superhighways; and the imminent promise of cyberspace and virtual reality for everyone. In the business world, purveyors of software have dethroned computer makers, while manufacturers of audio and video equipment are turning into entertainment companies. In the wealthier countries, an ever-growing proportion of the gross domestic product comes from the information sector rather than from manufacturing, as more and more people work with computers and relax with electronic entertainment. Most of all, we face an ever-swelling tide of information in the form of Web sites, CDs, and DVDs, videotapes and video games, docudramas, data­bases, hypertexts, and infomercials, not to mention old-fashioned books, magazines, and newspapers. What, then, is this “information” that defines our epoch? To mathematicians and scientists, the term information means the reduction of uncertainty in a communication system. In that sense, any pattern of energy or matter in nature—tree rings, bits of DNA, light from a distant star, the spoor of an animal—contains information. Like the tree that falls in the forest, however, such patterns become human information only if there is a human being present who understands them. So let us leave undeciphered patterns to the scientists and think of information as patterns of energy and matter that humans understand. Information is not the same thing as knowledge, though the two concepts overlap. Knowledge refers to ideas and facts that a human mind has internalized and understood: how to fix a flat tire, the name of a really good dentist, speaking French. Acquiring knowledge means absorbing a lot of information—for example, how to use French irregular verbs correctly.


Author(s):  
Daniel R. Headrick

Politicians may hark back to our founding fathers, the fall of the Bastille, the Battle of Trafalgar, and other such historical events to legitimize their actions, but the pundits who bombard us with hype would have us think the information age was born yesterday, the product of the latest machines. Ours is not the first information age in history, for hu­mans have always needed and used information. Yet in certain periods the methods used to handle information changed dramatically. We live in such an age, but it is not the first. The appearance of spoken languages must have been a momentous event, although we can only guess at it. Writing is a method we know much more about, as we do about other innovations like the alphabet, geometry, and Arabic numerals. We can also identify information machines in ancient times (e.g., the sundial and clepsydra) and even more so in the Middle Ages (the mechanical clock and the printing press). The purpose of this book is to argue that the information revolution in which we live is the result of a cultural change that began roughly three centuries ago, a change as important as the political and industrial revolutions for which the eighteenth and early nineteenth centuries are so well known. The cultural change, itself closely intertwined with the demographic, economic, and social transformations of the period, manifested itself in an increasing interest in information of all sorts—about nature, people, events, business, and other secular and practical topics. Public officials and private citizens alike not only demanded more information but also wanted it more readily accessible and easier to understand and apply—hence the development of information systems that the Age of Bastille, the Battle of Trafalgar, and other such historical events to legitimize their actions, but the pundits who bombard us with hype would have us think the information age was born yesterday, the product of the latest machines. Ours is not the first information age in history, for humans have always needed and used information. Yet in certain periods the methods used to handle information changed dramatically.


Author(s):  
Daniel R. Headrick

In June 1735, The Twenty-Eight-Year-Old Carl Von Linné, Known To US as Linnaeus (1707–1778), arrived in the Netherlands to obtain a doctorate. He headed for Harderwijk, a little university town known for its instant degrees. After a few formalities, he presented his thesis, which he had brought with him from Sweden. Six days after arriving, he was awarded a doctor of medicine degree. Though Linnaeus was undoubtedly eager to get his degree, the real purpose of his trip was to meet other botanists. Before arriving, he had already lectured at the University of Uppsala in Sweden and had traveled to Lapland—then as remote and exotic as Siberia or North America—to seek plants unknown to botanists. He chose Holland because it was the home of the great naturalist Hermann Boerhaave(1668-1738), superintendent of the botanical garden at Leiden. With colonies in Brazil, the Caribbean, South Africa, and the East Indies, Holland was the European center for botanical studies. Linnaeus did not arrive empty-handed; he carried a short manuscript entitled Systema naturae (The system of nature), containing his ideas on the reformation of botany. Boerhaave was so impressed that he urged Linnaeus to join an expedition to southern Africa and the Americas, promising him a professorship at Leiden on his return. Linnaeus declined the offer but accepted another that was even better. George Clifford, a wealthy merchant, had filled his estate with the most extensive collection of plants in Holland and even a zoo. He invited young Linnaeus to become his personal physician and superintendent of his garden, with a large salary, a huge budget, and luxurious living accommodations. In the three years he spent in Holland, Linnaeus not only reorganized Clifford’s garden but also published fourteen works in quick succession. The first were Fundamenta botanica and Bibliotheca botanica, dealing with the history of botany up to that time. Systema naturae, also published in 1735, divided nature into three kingdoms—animal, vegetable, and mineral—and presented a method of classifying the plant kingdom by class, order, genus, and species.


Sign in / Sign up

Export Citation Format

Share Document