Genome-wide assessment of population structure in Florida’s coastal seaside sparrows

Author(s):  
Carolyn Enloe ◽  
W. Andrew Cox ◽  
Akanksha Pandey ◽  
Sabrina S. Taylor ◽  
Stefan Woltmann ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154353 ◽  
Author(s):  
Carina Visser ◽  
Simon F. Lashmar ◽  
Este Van Marle-Köster ◽  
Mario A. Poli ◽  
Daniel Allain

2019 ◽  
Author(s):  
Yasin Kaymaz ◽  
Cliff I. Oduor ◽  
Ozkan Aydemir ◽  
Micah A. Luftig ◽  
Juliana A. Otieno ◽  
...  

AbstractEndemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is associated with malaria and Epstein Barr virus (EBV). In order to better understand the role of EBV in eBL, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (N=58) and healthy controls (N=40) residing in the same geographic region in Kenya. Comparing cases and controls, we found that EBV type 1 was significantly associated with eBL with 74.5% of patients (41/55) versus 47.5% of healthy children (19/40) carrying type 1 (OR=3.24, 95% CI=1.36 - 7.71,P=0.007). Controlling for EBV type, we also performed a genome-wide association study identifying 6 nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. Additionally, we observed that viruses isolated from plasma of eBL patients were identical to their tumor counterpart consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions as well as one novel genome with a 20 kb deletion resulting in the loss of multiple lytic and virion genes. Comparing EBV types, genes show differential variation rates as type 1 appears to be more divergent. Besides, type 2 demonstrates novel substructures. Overall, our findings address the complexities of EBV population structure and provide new insight into viral variation, which has the potential to influence eBL oncogenesis.Key PointsEBV type 1 is more prevalent in eBL patients compared to the geographically matched healthy control group.Genome-wide association analysis between cases and controls identifies 6 eBL-associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1 genes.Analysis of population structure reveals that EBV type 2 exists as two genomic sub groups.


2019 ◽  
Author(s):  
Maja Boczkowska ◽  
Katarzyna Bączek ◽  
Olga Kosakowska ◽  
Anna Rucińska ◽  
Wiesław Podyma ◽  
...  

Abstract Background: Valeriana officinalis L. is one of the most important medicinal plant with a mild sedative, nervine, antispasmodic and relaxant effect. Despite a substantial number of studies on this species, population genomics has not yet been analyzed. The main aim of this study was: characterization of genetic variation of natural populations of V. officinalis in Poland and comparison of variation of wild populations and the cultivated form using Next Generation Sequencing based DArTseq technique. We also would like to establish foundations for genetic monitoring of the species in the future and to develop genetic fingerprint profile for samples deposited in gene bank and in natural sites in order to assess the degree of their genetic integrity and population structure preservation in the future.Results: The major and also the most astounding result of our work is the low level of observed heterozygosity of individual plants from natural populations despite the fact that the species is widespread in the studied area. Inbreeding, in naturally outcrossing species such as valerian, decreases the reproductive success. The analysis of the population structure indicated the potential presence of metapopulation in a broad area of Poland and the formation of a distinct gene pool in Bieszczady Mountains. The results also indicate the presence of individuals of the cultivated form in natural populations in the region where the species is cultivated for the needs of the pharmaceutical industry and this could lead to structural and genetic imbalance in wild populations.Conclusions: The DArTseq technology can be applied effectively in genetic studies of V. officinalis. The genetic variability of wild populations is in fact significantly lower than assumed. Individuals from the cultivated population are found in the natural environment and their impact on wild populations should be monitored.


2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240743
Author(s):  
Maurice Marcel Sandeu ◽  
Charles Mulamba ◽  
Gareth D. Weedall ◽  
Charles S. Wondji

Background Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. Methods Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. Results Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. Conclusion The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.


2018 ◽  
Vol 5 (1) ◽  
pp. 170925 ◽  
Author(s):  
Catherine R. M. Attard ◽  
Luciano B. Beheregaray ◽  
Jonathan Sandoval-Castillo ◽  
K. Curt S. Jenner ◽  
Peter C. Gill ◽  
...  

Genetic datasets of tens of markers have been superseded through next-generation sequencing technology with genome-wide datasets of thousands of markers. Genomic datasets improve our power to detect low population structure and identify adaptive divergence. The increased population-level knowledge can inform the conservation management of endangered species, such as the blue whale ( Balaenoptera musculus ). In Australia, there are two known feeding aggregations of the pygmy blue whale ( B. m. brevicauda ) which have shown no evidence of genetic structure based on a small dataset of 10 microsatellites and mtDNA. Here, we develop and implement a high-resolution dataset of 8294 genome-wide filtered single nucleotide polymorphisms, the first of its kind for blue whales. We use these data to assess whether the Australian feeding aggregations constitute one population and to test for the first time whether there is adaptive divergence between the feeding aggregations. We found no evidence of neutral population structure and negligible evidence of adaptive divergence. We propose that individuals likely travel widely between feeding areas and to breeding areas, which would require them to be adapted to a wide range of environmental conditions. This has important implications for their conservation as this blue whale population is likely vulnerable to a range of anthropogenic threats both off Australia and elsewhere.


Sign in / Sign up

Export Citation Format

Share Document