scholarly journals Population genetic structure of the Natterjack toad (Epidalea calamita) in Ireland: implications for conservation management

Author(s):  
Marina Reyne ◽  
Kara Dicks ◽  
Claire McFarlane ◽  
Aurélie Aubry ◽  
Mark Emmerson ◽  
...  

AbstractMolecular methods can play a crucial role in species management and conservation. Despite the usefulness of genetic approaches, they are often not explicitly included as part of species recovery plans and conservation practises. The Natterjack toad (Epidalea calamita) is regionally Red-Listed as Endangered in Ireland. The species is declining and is now present at just seven sites within a highly restricted range. This study used 13 highly polymorphic microsatellite markers to analyse the population genetic diversity and structure. Genetic diversity was high with expected heterozygosity between 0.55 and 0.61 and allelic richness between 4.77 and 5.92. Effective population sizes were small (Ne < 100 individuals), but not abnormal for pond breeding amphibians. However, there was no evidence of historical or contemporary genetic bottlenecks or high levels of inbreeding. We identified a positive relationship between Ne and breeding pond surface area, suggesting that environmental factors are a key determinant of population size. Significant genetic structuring was detected throughout the species’ range, and we identified four genetic entities that should be considered in the species’ conservation strategies. Management should focus on preventing further population declines and future loss of genetic diversity overall and within genetic entities while maintaining adequate local effective population size through site-specific protection, human-mediated translocations and head-start programs. The apparent high levels of genetic variation give hope for the conservation of Ireland’s rarest amphibian if appropriately protected and managed.

Herpetozoa ◽  
2019 ◽  
Vol 32 ◽  
pp. 237-248 ◽  
Author(s):  
Octavio Monroy-Vilchis ◽  
Rosa-Laura Heredia-Bobadilla ◽  
Martha M. Zarco-González ◽  
Víctor Ávila-Akerberg ◽  
Armando Sunny

The most important factor leading to amphibian population declines and extinctions is habitat degradation and destruction. To help prevent further extinctions, studies are needed to make appropriate conservation decisions in small and fragmented populations. The goal of this study was to provide data from the population genetics of two micro-endemic mole salamanders from the Trans-Mexican Volcanic Belt. Nine microsatellite markers were used to study the population genetics of 152 individuals from two Ambystoma species. We sampled 38 individuals in two localities for A. altamirani and A. rivualre. We found medium to high levels of genetic diversity expressed as heterozygosity in the populations. However, all the populations presented few alleles per locus and genotypes. We found strong genetic structure between populations for each species. Effective population size was small but similar to that of the studies from other mole salamanders with restricted distributions or with recently fragmented habitats. Despite the medium to high levels of genetic diversity expressed as heterozygosity, we found few alleles, evidence of a genetic bottleneck and that the effective population size is small in all populations. Therefore, this study is important to propose better management plans and conservation efforts for these species.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20191989 ◽  
Author(s):  
M. C. Yates ◽  
E. Bowles ◽  
D. J. Fraser

Little empirical work in nature has quantified how wild populations with varying effective population sizes and genetic diversity perform when exposed to a gradient of ecologically important environmental conditions. To achieve this, juvenile brook trout from 12 isolated populations or closed metapopulations that differ substantially in population size and genetic diversity were transplanted to previously fishless ponds spanning a wide gradient of ecologically important variables. We evaluated the effect of genome-wide variation, effective population size ( N e ), pond habitat, and initial body size on two fitness correlates (survival and growth). Genetic variables had no effect on either fitness correlate, which was determined primarily by habitat (pond temperature, depth, and pH) and initial body size. These results suggest that some vertebrate populations with low genomic diversity, low N e , and long-term isolation can represent important sources of variation and are capable of maintaining fitness in, and ultimately persisting and adapting to, changing environments. Our results also reinforce the paramount importance of improving available habitat and slowing habitat degradation for species conservation.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Om P. Rajora ◽  
John W. R. Zinck

Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiong Fu ◽  
Jie Deng ◽  
Min Chen ◽  
Yan Zhong ◽  
Guo-Hui Lu ◽  
...  

Abstract Background Rivers and streams facilitate movement of individuals and their genes across the landscape and are generally recognized as dispersal corridors for riparian plants. Nevertheless, some authors have reported directly contrasting results, which may be attributed to a complex mixture of factors, such as the mating system and dispersal mechanisms of propagules (seed and pollen), that make it difficult to predict the genetic diversity and population structure of riparian species. Here, we investigated a riparian self-fertilizing herb Caulokaempferia coenobialis, which does not use anemochory or zoochory for seed dispersal; such studies could contribute to an improved understanding of the effect of rivers or streams on population genetic diversity and structure in riparian plants. Using polymorphic ISSR and cpDNA loci, we studied the effect at a microgeographic scale of different stream systems (a linear stream, a dendritic stream, and complex transverse hydrological system) in subtropical monsoon forest on the genetic structure and connectivity of C. coenobialis populations across Dinghu Mountain (DH) and Nankun Mountain (NK). Results The results indicate that the most recent haplotypes (DH: H7, H8; NK: h6, h7, h11, h12) are not shared among local populations of C. coenobialis within each stream system. Furthermore, downstream local populations do not accumulate genetic diversity, whether in the linear streamside local populations across DH (H: 0.091 vs 0.136) or the dendritic streamside local populations across NK (H: 0.079 vs 0.112, 0.110). Our results show that the connectivity of local C. coenobialis populations across DH and NK can be attributed to historical gene flows, resulting in a lack of spatial genetic structure, despite self-fertilization. Selfing C. coenobialis can maintain high genetic diversity (H = 0.251; I = 0.382) through genetic differentiation (GST = 0.5915; FST = 0.663), which is intensified by local adaptation and neutral mutation and/or genetic drift in local populations at a microgeographic scale. Conclusion We suggest that streams are not acting as corridors for dispersal of C. coenobialis, and conservation strategies for maintaining genetic diversity of selfing species should be focused on the protection of all habitat types, especially isolated fragments in ecosystem processes.


2019 ◽  
Author(s):  
Kyle A. O’Connell ◽  
Jamie R. Oaks ◽  
Amir Hamidy ◽  
Kyle J. Shaney ◽  
Nia Kurniawan ◽  
...  

Catastrophic events, such as volcanic eruptions, can have profound impacts on the demographic histories of resident taxa. Due to its presumed effect on biodiversity, the Pleistocene eruption of super-volcano Toba has received abundant attention. We test the effects of the Toba eruption on the diversification, genetic diversity, and demography of three co-distributed species of parachuting frogs (Genus Rhacophorus) on Sumatra. We generate target-capture data (∼950 loci and ∼440,000 bp) for three species of parachuting frogs and use these data paired with previously generated double digest restriction-site associated DNA (ddRADseq) data to estimate population structure and genetic diversity, to test for population size changes using demographic modelling, and to estimate the temporal clustering of size change events using a full-likelihood Bayesian method. We find that populations around Toba exhibit reduced genetic diversity compared with southern populations, and that northern populations exhibit a shift in effective population size around the time of the eruption (∼80 kya). However, we infer a stronger signal of expansion in southern populations around ∼400 kya, and at least two of the northern populations may have also expanded at this time. Taken together, these findings suggest that the Toba eruption precipitated population declines in northern populations, but that the demographic history of these three species was also strongly impacted by mid-Pleistocene forest expansion during glacial periods. We propose local rather than regional effects of the Toba eruption, and emphasize the dynamic nature of diversification on the Sunda Shelf.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249752
Author(s):  
Seon A. Yun ◽  
Seung-Chul Kim

Saussurea polylepis Nakai is an herbaceous perennial endemic to Korea and is highly restricted to several continental islands in the southwestern part of the Korean Peninsula. Given its very narrow geographical distribution, it is more vulnerable to anthropogenic activities and global climate changes than more widely distributed species. Despite the need for comprehensive genetic information for conservation and management, no such population genetic studies of S. polylepis have been conducted. In this study, genetic diversity and population structure were evaluated for 97 individuals from 5 populations (Gwanmaedo, Gageodo, Hongdo, Heusando, and Uido) using 19 polymorphic microsatellites. The populations were separated by a distance of 20–90 km. We found moderate levels of genetic diversity in S. polylepis (Ho = 0.42, He = 0.43). This may be due to long lifespans, outcrossing, and gene flow, despite its narrow range. High levels of gene flow (Nm = 1.76, mean Fst = 0.09), especially from wind-dispersed seeds, would contribute to low levels of genetic differentiation among populations. However, the small population size and reduced number of individuals in the reproductive phase of S. polylepis can be a major threat leading to inbreeding depression and genetic diversity loss. Bayesian cluster analysis revealed three significant structures at K = 3, consistent with DAPC and UPGMA. It is thought that sea level rise after the last glacial maximum may have acted as a geographical barrier, limiting the gene flow that would lead to distinct population structures. We proposed the Heuksando population, which is the largest island inhabited by S. polylepis, as a source population because of its large population size and high genetic diversity. Four management units (Gwanmaedo, Gageodo, Hongdo-Heuksando, and Uido) were suggested for conservation considering population size, genetic diversity, population structure, unique alleles, and geographical location (e.g., proximity).


2020 ◽  
Vol 101 (3) ◽  
pp. 779-789
Author(s):  
Payton Phillips ◽  
Travis M Livieri ◽  
Bradley J Swanson

Abstract Emerging infectious diseases have recently increased in wildlife and can result in population declines and the loss of genetic diversity in susceptible populations. As populations of impacted species decline, genetic diversity can be lost, with ramifications including reduced effective population size and increased population structuring. For species of conservation concern, which may already have low genetic diversity, the loss of genetic diversity can be especially important. To investigate the impacts of a novel pathogen on genetic diversity in a genetically depauperate endangered species, we assessed the ramifications of a sylvatic plague-induced bottleneck in black-footed ferrets (Mustela nigripes). Following a plague epizootic, we genotyped 184 ferrets from Conata Basin and Badlands National Park, South Dakota, at seven microsatellite loci. We compared our results to pre-plague studies in the same population. We observed population substructuring into three genetic clusters. These clusters reflect founder effects from ferret reintroduction events followed by genetic drift. Compared to the pre-plague population, we observed losses of allelic diversity in all clusters, as well as significantly reduced heterozygosity in one cluster. These results indicate that disease epizootics may reduce population size and also genetic diversity. Our results suggest the importance of early and sustained management in mitigating disease epizootics in naïve populations for the maintenance of genetic diversity.


2020 ◽  
Author(s):  
Chloé Schmidt ◽  
Colin J Garroway

AbstractHabitat loss and fragmentation are leading causes of vertebrate population declines. These declines are thought to be partly due to decreased connectivity and habitat loss reducing population sizes in human transformed habitats. With time this can lead to reduced effective population size and genetic diversity which restricts the ability of wildlife to cope with environmental change through genetic adaptation. However, it is not well understood whether these effects are generally applicable across taxa. Here, we repurposed and synthesized raw microsatellite data from online repositories from 19 amphibian species sampled at 554 sites in North America. For each site, we estimated gene diversity, allelic richness, effective population size, and population differentiation. Using binary urban-rural census designations, and continuous measures of human population density and the Human Footprint Index, we tested for generalizable effects of human land use on amphibian genetic diversity. We found no consistent relationships for any of our genetic metrics. While we did not detect directional effects for most species, a few generalist species responded positively to urbanization. These results contrast with consistent negative effects of urbanization in mammals and species specific positive and negative effects in birds. In the context of widespread amphibian declines, our results suggest that habitat loss in human transformed habitats is a more immediate concern than declining genetic diversity in populations that persist.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


Sign in / Sign up

Export Citation Format

Share Document