Benign Senescent Forgetfulness, Age-associated Memory Impairment, and Age-related Cognitive Decline

Author(s):  
Kathleen A. Welsh-Bohmer ◽  
David J. Madden
2021 ◽  
Vol 8 ◽  
Author(s):  
Yasuhisa Ano ◽  
Rena Ohya ◽  
Akihiko Takashima ◽  
Kazuyuki Uchida ◽  
Hiroyuki Nakayama

With the rapid increase in aging populations worldwide, there has been an increase in demand for preventive and therapeutic measures for age-related cognitive decline and dementia. Epidemiological studies show that consumption of dairy products reduces the risk for cognitive decline and dementia in the elderly. We have previously demonstrated in randomized trials that the consumption of β-lactolin, a whey-derived Gly-Thr-Trp-Tyr lactotetrapeptide, improves cognitive function in older adults. Orally administered β-lactolin is delivered to the brain and inhibits monoamine oxidase, resulting in alleviation of memory impairment. However, there is currently no evidence of the effects of long-term β-lactolin intake on aging. Here, we found that the discrimination index in the novel object recognition test for object recognition memory was reduced in mice aged 20 months compared with that in young mice, indicating that age-related cognitive decline was induced in the aged mice; in aged mice fed β-lactolin for 3 months, memory impairment was subsequently alleviated. In aged mice, impairment of light/dark activity cycles was found to be induced, which was subsequently alleviated by β-lactolin consumption. Additionally, the number of activated microglia in the hippocampus and cortex and the production of cytokines (tumor necrosis factor-α, macrophage inflammatory protein-1α, and macrophage chemoattractant protein-1) were increased in aged mice compared with those in young mice but were reduced in aged mice fed β-lactolin. The age-related hippocampal atrophy was improved in aged mice fed β-lactolin. Cytochrome c levels in the hippocampus and cortex were increased in aged mice compared with those in young mice but were also reduced by β-lactolin consumption. These results suggest that β-lactolin consumption prevents neural inflammation and alleviates aging-related cognitive decline.


Author(s):  
Yvonne Rogalski ◽  
Muriel Quintana

The population of older adults is rapidly increasing, as is the number and type of products and interventions proposed to prevent or reduce the risk of age-related cognitive decline. Advocacy and prevention are part of the American Speech-Language-Hearing Association’s (ASHA’s) scope of practice documents, and speech-language pathologists must have basic awareness of the evidence contributing to healthy cognitive aging. In this article, we provide a brief overview outlining the evidence on activity engagement and its effects on cognition in older adults. We explore the current evidence around the activities of eating and drinking with a discussion on the potential benefits of omega-3 fatty acids, polyphenols, alcohol, and coffee. We investigate the evidence on the hypothesized neuroprotective effects of social activity, the evidence on computerized cognitive training, and the emerging behavioral and neuroimaging evidence on physical activity. We conclude that actively aging using a combination of several strategies may be our best line of defense against cognitive decline.


2021 ◽  
Vol 67 ◽  
pp. 101302
Author(s):  
Benjamin Kioussis ◽  
Camilla S.L. Tuttle ◽  
Daniel S. Heard ◽  
Brian K. Kennedy ◽  
Nicola T. Lautenschlager ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1611
Author(s):  
Nur Fathiah Abdul Abdul Sani ◽  
Ahmad Imran Zaydi Amir Amir Hamzah ◽  
Zulzikry Hafiz Abu Abu Bakar ◽  
Yasmin Anum Mohd Mohd Yusof ◽  
Suzana Makpol ◽  
...  

The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult’s susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e046879
Author(s):  
Bernhard Grässler ◽  
Fabian Herold ◽  
Milos Dordevic ◽  
Tariq Ali Gujar ◽  
Sabine Darius ◽  
...  

IntroductionThe diagnosis of mild cognitive impairment (MCI), that is, the transitory phase between normal age-related cognitive decline and dementia, remains a challenging task. It was observed that a multimodal approach (simultaneous analysis of several complementary modalities) can improve the classification accuracy. We will combine three noninvasive measurement modalities: functional near-infrared spectroscopy (fNIRS), electroencephalography and heart rate variability via ECG. Our aim is to explore neurophysiological correlates of cognitive performance and whether our multimodal approach can aid in early identification of individuals with MCI.Methods and analysisThis study will be a cross-sectional with patients with MCI and healthy controls (HC). The neurophysiological signals will be measured during rest and while performing cognitive tasks: (1) Stroop, (2) N-back and (3) verbal fluency test (VFT). Main aims of statistical analysis are to (1) determine the differences in neurophysiological responses of HC and MCI, (2) investigate relationships between measures of cognitive performance and neurophysiological responses and (3) investigate whether the classification accuracy can be improved by using our multimodal approach. To meet these targets, statistical analysis will include machine learning approaches.This is, to the best of our knowledge, the first study that applies simultaneously these three modalities in MCI and HC. We hypothesise that the multimodal approach improves the classification accuracy between HC and MCI as compared with a unimodal approach. If our hypothesis is verified, this study paves the way for additional research on multimodal approaches for dementia research and fosters the exploration of new biomarkers for an early detection of nonphysiological age-related cognitive decline.Ethics and disseminationEthics approval was obtained from the local Ethics Committee (reference: 83/19). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.Trial registration numberClinicalTrials.gov, NCT04427436, registered on 10 June 2020, https://clinicaltrials.gov/ct2/show/study/NCT04427436.


2011 ◽  
Vol 43 (1) ◽  
pp. 201-212 ◽  
Author(s):  
Heather D. VanGuilder ◽  
Julie A. Farley ◽  
Han Yan ◽  
Colleen A. Van Kirk ◽  
Matthew Mitschelen ◽  
...  

2012 ◽  
Vol 24 (S1) ◽  
pp. S1-S2 ◽  
Author(s):  
Seol-Heui Han ◽  
Helen Lavretsky

In June 2011, Dr. Willmar Schwabe Pharmaceuticals sponsored a two-day expert meeting in Amsterdam, The Netherlands. The meeting brought together 19 dementia experts from a range of disciplines and countries to review preclinical and clinical data on Ginkgo biloba special extract EGb 761® in the context of recent developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease (AD). Ginkgo biloba special extract EGb 761® is formally approved and reimbursed for the symptomatic treatment of age-related cognitive decline or dementia by numerous authorities worldwide. The meeting therefore focused on relevant research questions and potential study designs with appropriate target populations to prove the efficacy of Ginkgo biloba special extract EGb 761® as a disease-modifying product in AD and to reveal further relevant modes of action.


Sign in / Sign up

Export Citation Format

Share Document