scholarly journals Ligation of 2′, 3′‐cyclic phosphate RNAs for the identification of microRNA binding sites

FEBS Letters ◽  
2020 ◽  
Author(s):  
Christian Berk ◽  
Yuluan Wang ◽  
Artur Laski ◽  
Stylianos Tsagkris ◽  
Jonathan Hall
2012 ◽  
Vol 109 (38) ◽  
pp. 15235-15240 ◽  
Author(s):  
Markus Englert ◽  
Shuangluo Xia ◽  
Chiaki Okada ◽  
Akiyoshi Nakamura ◽  
Ved Tanavde ◽  
...  

The RtcB protein has recently been identified as a 3′-phosphate RNA ligase that directly joins an RNA strand ending with a 2′,3′-cyclic phosphate to the 5′-hydroxyl group of another RNA strand in a GTP/Mn2+-dependent reaction. Here, we report two crystal structures of Pyrococcus horikoshii RNA-splicing ligase RtcB in complex with Mn2+ alone (RtcB/ Mn2+) and together with a covalently bound GMP (RtcB-GMP/Mn2+). The RtcB/ Mn2+ structure (at 1.6 Å resolution) shows two Mn2+ ions at the active site, and an array of sulfate ions nearby that indicate the binding sites of the RNA phosphate backbone. The structure of the RtcB-GMP/Mn2+ complex (at 2.3 Å resolution) reveals the detailed geometry of guanylylation of histidine 404. The critical roles of the key residues involved in the binding of the two Mn2+ ions, the four sulfates, and GMP are validated in extensive mutagenesis and biochemical experiments, which also provide a thorough characterization for the three steps of the RtcB ligation pathway: (i) guanylylation of the enzyme, (ii) guanylyl-transfer to the RNA substrate, and (iii) overall ligation. These results demonstrate that the enzyme’s substrate-induced GTP binding site and the putative reactive RNA ends are in the vicinity of the binuclear Mn2+ active center, which provides detailed insight into how the enzyme-bound GMP is tansferred to the 3′-phosphate of the RNA substrate for activation and subsequent nucleophilic attack by the 5′-hydroxyl of the second RNA substrate, resulting in the ligated product and release of GMP.


Recent results from the crystallographic studies on glycogen phosphorylase b at 3 A resolution are reviewed with special reference to other themes of the meeting. The structural similarity of the fold of 150 residues in phosphorylase to that observed in lactate dehydrogenase is discussed and the binding sites for NADH in phosphorylase are described. The binding of the potent inhibitor glucose-1,2-cyclic phosphate to phosphorylase b in the crystal has been studied at 3 A resolution. The results are compared with those previously obtained for glucose-1-phosphate and discussed with reference to proposals for a mechanism of catalysis that involves the essential cofactor pyridoxal phosphate.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Author(s):  
Burton B. Silver ◽  
Ronald S. Nelson

Some investigators feel that insulin does not enter cells but exerts its influence in some manner on the cell surface. Ferritin labeling of insulin and insulin antibody was used to determine if binding sites of insulin to specific target organs could be seen with electron microscopy.Alloxanized rats were considered diabetic if blood sugar levels were in excess of 300 mg %. Test reagents included ferritin, ferritin labeled insulin, and ferritin labeled insulin antibody. Target organs examined were were diaphragm, kidney, gastrocnemius, fat pad, liver and anterior pituitary. Reagents were administered through the left common carotid. Survival time was at least one hour in test animals. Tissue incubation studies were also done in normal as well as diabetic rats. Specimens were fixed in gluteraldehyde and osmium followed by staining with lead and uranium salts. Some tissues were not stained.


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


Author(s):  
D. C. Hixson

The abilities of plant lectins to preferentially agglutinate malignant cells and to bind to specific monosaccharide or oligosaccharide sequences of glycoproteins and glycolipids make them a new and important biochemical probe for investigating alterations in plasma membrane structure which may result from malignant transformation. Electron and light microscopic studies have demonstrated clustered binding sites on surfaces of SV40-infected or tryp- sinized 3T3 cells when labeled with concanavalin A (con A). No clustering of con A binding sites was observed in normal 3T3 cells. It has been proposed that topological rearrangement of lectin binding sites into clusters enables con A to agglutinate SV40-infected or trypsinized 3T3 cells (1). However, observations by other investigators have not been consistent with this proposal (2) perhaps due to differences in reagents used, cell culture conditions, or labeling techniques. The present work was undertaken to study the lectin binding properties of normal and RNA tumor virus-infected cells and their associated viruses using lectins and ferritin-conjugated lectins of five different specificities.


Sign in / Sign up

Export Citation Format

Share Document